This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptresicc.f | ⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ 𝐴 ) | |
| dvmptresicc.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) | ||
| dvmptresicc.fdv | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑥 ∈ ℂ ↦ 𝐵 ) ) | ||
| dvmptresicc.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ ) | ||
| dvmptresicc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| dvmptresicc.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| Assertion | dvmptresicc | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptresicc.f | ⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ 𝐴 ) | |
| 2 | dvmptresicc.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 3 | dvmptresicc.fdv | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑥 ∈ ℂ ↦ 𝐵 ) ) | |
| 4 | dvmptresicc.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 5 | dvmptresicc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 6 | dvmptresicc.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 7 | 1 | reseq1i | ⊢ ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) = ( ( 𝑥 ∈ ℂ ↦ 𝐴 ) ↾ ( 𝐶 [,] 𝐷 ) ) |
| 8 | 5 6 | iccssred | ⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) |
| 9 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 11 | 8 10 | sstrd | ⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℂ ) |
| 12 | 11 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ 𝐴 ) ↾ ( 𝐶 [,] 𝐷 ) ) = ( 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ↦ 𝐴 ) ) |
| 13 | 7 12 | eqtrid | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) = ( 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ↦ 𝐴 ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ℝ D ( 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ↦ 𝐴 ) ) ) |
| 15 | 8 | resabs1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ℝ ) ↾ ( 𝐶 [,] 𝐷 ) ) = ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) |
| 16 | 15 | eqcomd | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) = ( ( 𝐹 ↾ ℝ ) ↾ ( 𝐶 [,] 𝐷 ) ) ) |
| 17 | 16 | oveq2d | ⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ℝ D ( ( 𝐹 ↾ ℝ ) ↾ ( 𝐶 [,] 𝐷 ) ) ) ) |
| 18 | 2 1 | fmptd | ⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
| 19 | 18 10 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ ℝ ) : ℝ ⟶ ℂ ) |
| 20 | ssidd | ⊢ ( 𝜑 → ℝ ⊆ ℝ ) | |
| 21 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 22 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 23 | 21 22 | dvres | ⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝐹 ↾ ℝ ) : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) ) → ( ℝ D ( ( 𝐹 ↾ ℝ ) ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D ( 𝐹 ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) ) |
| 24 | 10 19 20 8 23 | syl22anc | ⊢ ( 𝜑 → ( ℝ D ( ( 𝐹 ↾ ℝ ) ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D ( 𝐹 ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) ) |
| 25 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 26 | 25 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 27 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 28 | 3 | dmeqd | ⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) = dom ( 𝑥 ∈ ℂ ↦ 𝐵 ) ) |
| 29 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℂ 𝐵 ∈ ℂ ) |
| 30 | dmmptg | ⊢ ( ∀ 𝑥 ∈ ℂ 𝐵 ∈ ℂ → dom ( 𝑥 ∈ ℂ ↦ 𝐵 ) = ℂ ) | |
| 31 | 29 30 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ ℂ ↦ 𝐵 ) = ℂ ) |
| 32 | 28 31 | eqtr2d | ⊢ ( 𝜑 → ℂ = dom ( ℂ D 𝐹 ) ) |
| 33 | 10 32 | sseqtrd | ⊢ ( 𝜑 → ℝ ⊆ dom ( ℂ D 𝐹 ) ) |
| 34 | dvres3 | ⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ 𝐹 : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) ) → ( ℝ D ( 𝐹 ↾ ℝ ) ) = ( ( ℂ D 𝐹 ) ↾ ℝ ) ) | |
| 35 | 26 18 27 33 34 | syl22anc | ⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ℝ ) ) = ( ( ℂ D 𝐹 ) ↾ ℝ ) ) |
| 36 | iccntr | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) | |
| 37 | 5 6 36 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) |
| 38 | 35 37 | reseq12d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝐹 ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ( ℂ D 𝐹 ) ↾ ℝ ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
| 39 | ioossre | ⊢ ( 𝐶 (,) 𝐷 ) ⊆ ℝ | |
| 40 | resabs1 | ⊢ ( ( 𝐶 (,) 𝐷 ) ⊆ ℝ → ( ( ( ℂ D 𝐹 ) ↾ ℝ ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( ( ℂ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) | |
| 41 | 39 40 | mp1i | ⊢ ( 𝜑 → ( ( ( ℂ D 𝐹 ) ↾ ℝ ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( ( ℂ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
| 42 | 3 | reseq1d | ⊢ ( 𝜑 → ( ( ℂ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( ( 𝑥 ∈ ℂ ↦ 𝐵 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
| 43 | ioosscn | ⊢ ( 𝐶 (,) 𝐷 ) ⊆ ℂ | |
| 44 | resmpt | ⊢ ( ( 𝐶 (,) 𝐷 ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ 𝐵 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) | |
| 45 | 43 44 | mp1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ 𝐵 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |
| 46 | 42 45 | eqtrd | ⊢ ( 𝜑 → ( ( ℂ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |
| 47 | 38 41 46 | 3eqtrd | ⊢ ( 𝜑 → ( ( ℝ D ( 𝐹 ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |
| 48 | 17 24 47 | 3eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |
| 49 | 14 48 | eqtr3d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |