This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one element in a singleton. Exercise 2 of TakeutiZaring p. 15 (generalized). (Contributed by NM, 13-Sep-1995) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsng | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐵 ↔ 𝐴 = 𝐵 ) ) | |
| 2 | df-sn | ⊢ { 𝐵 } = { 𝑥 ∣ 𝑥 = 𝐵 } | |
| 3 | 1 2 | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) ) |