This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: lemma for itgsubsticc . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsubsticclem.1 | ⊢ 𝐹 = ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) | |
| itgsubsticclem.2 | ⊢ 𝐺 = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ) | ||
| itgsubsticclem.3 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | ||
| itgsubsticclem.4 | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | ||
| itgsubsticclem.5 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| itgsubsticclem.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ) | ||
| itgsubsticclem.7 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) | ||
| itgsubsticclem.8 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) ) | ||
| itgsubsticclem.9 | ⊢ ( 𝜑 → 𝐾 ∈ ℝ ) | ||
| itgsubsticclem.10 | ⊢ ( 𝜑 → 𝐿 ∈ ℝ ) | ||
| itgsubsticclem.11 | ⊢ ( 𝜑 → 𝐾 ≤ 𝐿 ) | ||
| itgsubsticclem.12 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) | ||
| itgsubsticclem.13 | ⊢ ( 𝑢 = 𝐴 → 𝐶 = 𝐸 ) | ||
| itgsubsticclem.14 | ⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐾 ) | ||
| itgsubsticclem.15 | ⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝐿 ) | ||
| Assertion | itgsubsticclem | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsubsticclem.1 | ⊢ 𝐹 = ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) | |
| 2 | itgsubsticclem.2 | ⊢ 𝐺 = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ) | |
| 3 | itgsubsticclem.3 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| 4 | itgsubsticclem.4 | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | |
| 5 | itgsubsticclem.5 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 6 | itgsubsticclem.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ) | |
| 7 | itgsubsticclem.7 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) | |
| 8 | itgsubsticclem.8 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) ) | |
| 9 | itgsubsticclem.9 | ⊢ ( 𝜑 → 𝐾 ∈ ℝ ) | |
| 10 | itgsubsticclem.10 | ⊢ ( 𝜑 → 𝐿 ∈ ℝ ) | |
| 11 | itgsubsticclem.11 | ⊢ ( 𝜑 → 𝐾 ≤ 𝐿 ) | |
| 12 | itgsubsticclem.12 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) | |
| 13 | itgsubsticclem.13 | ⊢ ( 𝑢 = 𝐴 → 𝐶 = 𝐸 ) | |
| 14 | itgsubsticclem.14 | ⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐾 ) | |
| 15 | itgsubsticclem.15 | ⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝐿 ) | |
| 16 | fveq2 | ⊢ ( 𝑢 = 𝑤 → ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑤 ) ) | |
| 17 | nfcv | ⊢ Ⅎ 𝑤 ( 𝐺 ‘ 𝑢 ) | |
| 18 | nfmpt1 | ⊢ Ⅎ 𝑢 ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ) | |
| 19 | 2 18 | nfcxfr | ⊢ Ⅎ 𝑢 𝐺 |
| 20 | nfcv | ⊢ Ⅎ 𝑢 𝑤 | |
| 21 | 19 20 | nffv | ⊢ Ⅎ 𝑢 ( 𝐺 ‘ 𝑤 ) |
| 22 | 16 17 21 | cbvditg | ⊢ ⨜ [ 𝐾 → 𝐿 ] ( 𝐺 ‘ 𝑢 ) d 𝑢 = ⨜ [ 𝐾 → 𝐿 ] ( 𝐺 ‘ 𝑤 ) d 𝑤 |
| 23 | 9 10 | iccssred | ⊢ ( 𝜑 → ( 𝐾 [,] 𝐿 ) ⊆ ℝ ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐾 [,] 𝐿 ) ⊆ ℝ ) |
| 25 | ioossicc | ⊢ ( 𝐾 (,) 𝐿 ) ⊆ ( 𝐾 [,] 𝐿 ) | |
| 26 | 25 | sseli | ⊢ ( 𝑢 ∈ ( 𝐾 (,) 𝐿 ) → 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 28 | 24 27 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → 𝑢 ∈ ℝ ) |
| 29 | 27 | iftrued | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) = ( 𝐹 ‘ 𝑢 ) ) |
| 30 | 1 | a1i | ⊢ ( 𝜑 → 𝐹 = ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ) |
| 31 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) → 𝐹 : ( 𝐾 [,] 𝐿 ) ⟶ ℂ ) | |
| 32 | 8 31 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐾 [,] 𝐿 ) ⟶ ℂ ) |
| 33 | 30 32 | feq1dd | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) : ( 𝐾 [,] 𝐿 ) ⟶ ℂ ) |
| 34 | 33 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ) → 𝐶 ∈ ℂ ) |
| 35 | 27 34 | syldan | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → 𝐶 ∈ ℂ ) |
| 36 | 1 | fvmpt2 | ⊢ ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐹 ‘ 𝑢 ) = 𝐶 ) |
| 37 | 27 35 36 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐹 ‘ 𝑢 ) = 𝐶 ) |
| 38 | 37 35 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ℂ ) |
| 39 | 29 38 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ∈ ℂ ) |
| 40 | 2 | fvmpt2 | ⊢ ( ( 𝑢 ∈ ℝ ∧ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ∈ ℂ ) → ( 𝐺 ‘ 𝑢 ) = if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ) |
| 41 | 28 39 40 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐺 ‘ 𝑢 ) = if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ) |
| 42 | 41 29 37 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐺 ‘ 𝑢 ) = 𝐶 ) |
| 43 | 11 42 | ditgeq3d | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] ( 𝐺 ‘ 𝑢 ) d 𝑢 = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
| 44 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 45 | 44 | a1i | ⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 46 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 47 | 46 | a1i | ⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 48 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
| 49 | 48 | eqcomi | ⊢ ℝ = ( -∞ (,) +∞ ) |
| 50 | 49 | a1i | ⊢ ( 𝜑 → ℝ = ( -∞ (,) +∞ ) ) |
| 51 | 23 50 | sseqtrd | ⊢ ( 𝜑 → ( 𝐾 [,] 𝐿 ) ⊆ ( -∞ (,) +∞ ) ) |
| 52 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 53 | 50 52 | eqsstrrdi | ⊢ ( 𝜑 → ( -∞ (,) +∞ ) ⊆ ℂ ) |
| 54 | cncfss | ⊢ ( ( ( 𝐾 [,] 𝐿 ) ⊆ ( -∞ (,) +∞ ) ∧ ( -∞ (,) +∞ ) ⊆ ℂ ) → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ⊆ ( ( 𝑋 [,] 𝑌 ) –cn→ ( -∞ (,) +∞ ) ) ) | |
| 55 | 51 53 54 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ⊆ ( ( 𝑋 [,] 𝑌 ) –cn→ ( -∞ (,) +∞ ) ) ) |
| 56 | 55 6 | sseldd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( -∞ (,) +∞ ) ) ) |
| 57 | nfmpt1 | ⊢ Ⅎ 𝑢 ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) | |
| 58 | 1 57 | nfcxfr | ⊢ Ⅎ 𝑢 𝐹 |
| 59 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 60 | eqid | ⊢ ∪ ( TopOpen ‘ ℂfld ) = ∪ ( TopOpen ‘ ℂfld ) | |
| 61 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 62 | 61 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 63 | 62 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 64 | 23 52 | sstrdi | ⊢ ( 𝜑 → ( 𝐾 [,] 𝐿 ) ⊆ ℂ ) |
| 65 | ssid | ⊢ ℂ ⊆ ℂ | |
| 66 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) | |
| 67 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 68 | 67 | restid | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 69 | 62 68 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 70 | 69 | eqcomi | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 71 | 61 66 70 | cncfcn | ⊢ ( ( ( 𝐾 [,] 𝐿 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 72 | 64 65 71 | sylancl | ⊢ ( 𝜑 → ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 73 | reex | ⊢ ℝ ∈ V | |
| 74 | 73 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 75 | restabs | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐾 [,] 𝐿 ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) | |
| 76 | 63 23 74 75 | syl3anc | ⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) |
| 77 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 78 | 77 | eqcomi | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) ) |
| 79 | 78 | a1i | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) ) ) |
| 80 | 79 | oveq1d | ⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) ) |
| 81 | 76 80 | eqtr3d | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) ) |
| 82 | 81 | oveq1d | ⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 83 | 72 82 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 84 | 8 83 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 85 | 58 59 60 2 9 10 11 63 84 | icccncfext | ⊢ ( 𝜑 → ( 𝐺 ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) ∧ ( 𝐺 ↾ ( 𝐾 [,] 𝐿 ) ) = 𝐹 ) ) |
| 86 | 85 | simpld | ⊢ ( 𝜑 → 𝐺 ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) ) |
| 87 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 88 | eqid | ⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) | |
| 89 | 87 88 | cnf | ⊢ ( 𝐺 ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) → 𝐺 : ℝ ⟶ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) |
| 90 | 86 89 | syl | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) |
| 91 | 50 | feq2d | ⊢ ( 𝜑 → ( 𝐺 : ℝ ⟶ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ↔ 𝐺 : ( -∞ (,) +∞ ) ⟶ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) ) |
| 92 | 90 91 | mpbid | ⊢ ( 𝜑 → 𝐺 : ( -∞ (,) +∞ ) ⟶ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) |
| 93 | 92 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ ( -∞ (,) +∞ ) ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
| 94 | 32 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℂ ) |
| 95 | cncfss | ⊢ ( ( ran 𝐹 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) ⊆ ( ( -∞ (,) +∞ ) –cn→ ℂ ) ) | |
| 96 | 94 65 95 | sylancl | ⊢ ( 𝜑 → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) ⊆ ( ( -∞ (,) +∞ ) –cn→ ℂ ) ) |
| 97 | 49 | oveq2i | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( ( TopOpen ‘ ℂfld ) ↾t ( -∞ (,) +∞ ) ) |
| 98 | 77 97 | eqtri | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( -∞ (,) +∞ ) ) |
| 99 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) = ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) | |
| 100 | 61 98 99 | cncfcn | ⊢ ( ( ( -∞ (,) +∞ ) ⊆ ℂ ∧ ran 𝐹 ⊆ ℂ ) → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) = ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) ) |
| 101 | 53 94 100 | syl2anc | ⊢ ( 𝜑 → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) = ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) ) |
| 102 | 101 | eqcomd | ⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) = ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) ) |
| 103 | 86 102 | eleqtrd | ⊢ ( 𝜑 → 𝐺 ∈ ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) ) |
| 104 | 96 103 | sseldd | ⊢ ( 𝜑 → 𝐺 ∈ ( ( -∞ (,) +∞ ) –cn→ ℂ ) ) |
| 105 | 93 104 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑤 ∈ ( -∞ (,) +∞ ) ↦ ( 𝐺 ‘ 𝑤 ) ) ∈ ( ( -∞ (,) +∞ ) –cn→ ℂ ) ) |
| 106 | fveq2 | ⊢ ( 𝑤 = 𝐴 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝐴 ) ) | |
| 107 | 3 4 5 45 47 56 7 105 12 106 14 15 | itgsubst | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] ( 𝐺 ‘ 𝑤 ) d 𝑤 = ⨜ [ 𝑋 → 𝑌 ] ( ( 𝐺 ‘ 𝐴 ) · 𝐵 ) d 𝑥 ) |
| 108 | 22 43 107 | 3eqtr3a | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( ( 𝐺 ‘ 𝐴 ) · 𝐵 ) d 𝑥 ) |
| 109 | 2 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐺 = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ) ) |
| 110 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝑢 = 𝐴 ) | |
| 111 | 61 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 112 | 3 4 | iccssred | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 113 | 112 52 | sstrdi | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℂ ) |
| 114 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 [,] 𝑌 ) ) ) | |
| 115 | 111 113 114 | sylancr | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 [,] 𝑌 ) ) ) |
| 116 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐾 [,] 𝐿 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ∈ ( TopOn ‘ ( 𝐾 [,] 𝐿 ) ) ) | |
| 117 | 111 64 116 | sylancr | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ∈ ( TopOn ‘ ( 𝐾 [,] 𝐿 ) ) ) |
| 118 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) | |
| 119 | 61 118 66 | cncfcn | ⊢ ( ( ( 𝑋 [,] 𝑌 ) ⊆ ℂ ∧ ( 𝐾 [,] 𝐿 ) ⊆ ℂ ) → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) ) |
| 120 | 113 64 119 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) ) |
| 121 | 6 120 | eleqtrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) ) |
| 122 | cnf2 | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 [,] 𝑌 ) ) ∧ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ∈ ( TopOn ‘ ( 𝐾 [,] 𝐿 ) ) ∧ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) | |
| 123 | 115 117 121 122 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) |
| 124 | 123 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) |
| 125 | eqid | ⊢ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) | |
| 126 | 125 | fmpt | ⊢ ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ↔ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) |
| 127 | 124 126 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 128 | ioossicc | ⊢ ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) | |
| 129 | 128 | sseli | ⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 130 | 129 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 131 | rsp | ⊢ ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝐾 [,] 𝐿 ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) → 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ) ) | |
| 132 | 127 130 131 | sylc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 133 | 132 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 134 | 110 133 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 135 | 134 | iftrued | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) = ( 𝐹 ‘ 𝑢 ) ) |
| 136 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝜑 ) | |
| 137 | 136 134 34 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐶 ∈ ℂ ) |
| 138 | 134 137 36 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → ( 𝐹 ‘ 𝑢 ) = 𝐶 ) |
| 139 | 13 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐶 = 𝐸 ) |
| 140 | 135 138 139 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) = 𝐸 ) |
| 141 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐾 [,] 𝐿 ) ⊆ ℝ ) |
| 142 | 141 132 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ℝ ) |
| 143 | elex | ⊢ ( 𝐴 ∈ ( 𝐾 [,] 𝐿 ) → 𝐴 ∈ V ) | |
| 144 | 132 143 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ V ) |
| 145 | isset | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑢 𝑢 = 𝐴 ) | |
| 146 | 144 145 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ∃ 𝑢 𝑢 = 𝐴 ) |
| 147 | 139 137 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐸 ∈ ℂ ) |
| 148 | 146 147 | exlimddv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐸 ∈ ℂ ) |
| 149 | 109 140 142 148 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐺 ‘ 𝐴 ) = 𝐸 ) |
| 150 | 149 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( 𝐺 ‘ 𝐴 ) · 𝐵 ) = ( 𝐸 · 𝐵 ) ) |
| 151 | 5 150 | ditgeq3d | ⊢ ( 𝜑 → ⨜ [ 𝑋 → 𝑌 ] ( ( 𝐺 ‘ 𝐴 ) · 𝐵 ) d 𝑥 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |
| 152 | 108 151 | eqtrd | ⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |