This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idcncfg.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| idcncfg.b | ⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) | ||
| Assertion | idcncfg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idcncfg.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | idcncfg.b | ⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) | |
| 3 | cncfmptid | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ 𝐵 ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ 𝐵 ) ) |