This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a continuous function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negcncfg.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) | |
| Assertion | negcncfg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcncfg.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 2 | df-neg | ⊢ - 𝐵 = ( 0 − 𝐵 ) | |
| 3 | 2 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 = ( 0 − 𝐵 ) ) |
| 4 | 3 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ ( 0 − 𝐵 ) ) ) |
| 5 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ 0 ) = ( 𝑥 ∈ ℂ ↦ 0 ) | |
| 6 | 0cn | ⊢ 0 ∈ ℂ | |
| 7 | ssidd | ⊢ ( 0 ∈ ℂ → ℂ ⊆ ℂ ) | |
| 8 | id | ⊢ ( 0 ∈ ℂ → 0 ∈ ℂ ) | |
| 9 | 7 8 7 | constcncfg | ⊢ ( 0 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 0 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 10 | 6 9 | mp1i | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 0 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 11 | cncfrss | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) → 𝐴 ⊆ ℂ ) | |
| 12 | 1 11 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 13 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 14 | 6 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ℂ ) |
| 15 | 5 10 12 13 14 | cncfmptssg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 16 | 15 1 | subcncf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 0 − 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 17 | 4 16 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) |