This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007) (Revised by Mario Carneiro, 3-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincn | ⊢ sin ∈ ( ℂ –cn→ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sin | ⊢ sin = ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 4 | 3 | a1i | ⊢ ( ⊤ → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 5 | efcn | ⊢ exp ∈ ( ℂ –cn→ ℂ ) | |
| 6 | 5 | a1i | ⊢ ( ⊤ → exp ∈ ( ℂ –cn→ ℂ ) ) |
| 7 | ax-icn | ⊢ i ∈ ℂ | |
| 8 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) | |
| 9 | 8 | mulc1cncf | ⊢ ( i ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 10 | 7 9 | mp1i | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 11 | 6 10 | cncfmpt1f | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 12 | negicn | ⊢ - i ∈ ℂ | |
| 13 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ ( - i · 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( - i · 𝑥 ) ) | |
| 14 | 13 | mulc1cncf | ⊢ ( - i ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( - i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 15 | 12 14 | mp1i | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( - i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 16 | 6 15 | cncfmpt1f | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( exp ‘ ( - i · 𝑥 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 17 | 2 4 11 16 | cncfmpt2f | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 18 | cncff | ⊢ ( ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ) ∈ ( ℂ –cn→ ℂ ) → ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ) : ℂ ⟶ ℂ ) | |
| 19 | 17 18 | syl | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ) : ℂ ⟶ ℂ ) |
| 20 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ) | |
| 21 | 20 | fmpt | ⊢ ( ∀ 𝑥 ∈ ℂ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ∈ ℂ ↔ ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ) : ℂ ⟶ ℂ ) |
| 22 | 19 21 | sylibr | ⊢ ( ⊤ → ∀ 𝑥 ∈ ℂ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ∈ ℂ ) |
| 23 | eqidd | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ) ) | |
| 24 | eqidd | ⊢ ( ⊤ → ( 𝑦 ∈ ℂ ↦ ( 𝑦 / ( 2 · i ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑦 / ( 2 · i ) ) ) ) | |
| 25 | oveq1 | ⊢ ( 𝑦 = ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) → ( 𝑦 / ( 2 · i ) ) = ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ) | |
| 26 | 22 23 24 25 | fmptcof | ⊢ ( ⊤ → ( ( 𝑦 ∈ ℂ ↦ ( 𝑦 / ( 2 · i ) ) ) ∘ ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ) ) |
| 27 | 2mulicn | ⊢ ( 2 · i ) ∈ ℂ | |
| 28 | 2muline0 | ⊢ ( 2 · i ) ≠ 0 | |
| 29 | eqid | ⊢ ( 𝑦 ∈ ℂ ↦ ( 𝑦 / ( 2 · i ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑦 / ( 2 · i ) ) ) | |
| 30 | 29 | divccncf | ⊢ ( ( ( 2 · i ) ∈ ℂ ∧ ( 2 · i ) ≠ 0 ) → ( 𝑦 ∈ ℂ ↦ ( 𝑦 / ( 2 · i ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 31 | 27 28 30 | mp2an | ⊢ ( 𝑦 ∈ ℂ ↦ ( 𝑦 / ( 2 · i ) ) ) ∈ ( ℂ –cn→ ℂ ) |
| 32 | 31 | a1i | ⊢ ( ⊤ → ( 𝑦 ∈ ℂ ↦ ( 𝑦 / ( 2 · i ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 33 | 17 32 | cncfco | ⊢ ( ⊤ → ( ( 𝑦 ∈ ℂ ↦ ( 𝑦 / ( 2 · i ) ) ) ∘ ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 34 | 26 33 | eqeltrrd | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 35 | 34 | mptru | ⊢ ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ) ∈ ( ℂ –cn→ ℂ ) |
| 36 | 1 35 | eqeltri | ⊢ sin ∈ ( ℂ –cn→ ℂ ) |