This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exercise: the integral of x |-> cos a x on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgcoscmulx.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| itgcoscmulx.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| itgcoscmulx.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| itgcoscmulx.blec | ⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) | ||
| itgcoscmulx.an0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| Assertion | itgcoscmulx | ⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( cos ‘ ( 𝐴 · 𝑥 ) ) d 𝑥 = ( ( ( sin ‘ ( 𝐴 · 𝐶 ) ) − ( sin ‘ ( 𝐴 · 𝐵 ) ) ) / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgcoscmulx.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | itgcoscmulx.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | itgcoscmulx.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | itgcoscmulx.blec | ⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) | |
| 5 | itgcoscmulx.an0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 6 | 2 3 | iccssred | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
| 7 | 6 | resmptd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ↾ ( 𝐵 [,] 𝐶 ) ) = ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) |
| 8 | 7 | eqcomd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) = ( ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ↾ ( 𝐵 [,] 𝐶 ) ) ) |
| 9 | 8 | oveq2d | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ↾ ( 𝐵 [,] 𝐶 ) ) ) ) |
| 10 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 12 | 11 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 13 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) | |
| 15 | 13 14 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
| 16 | 15 | sincld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 17 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝐴 ≠ 0 ) |
| 18 | 16 13 17 | divcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ∈ ℂ ) |
| 19 | 12 18 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ∈ ℂ ) |
| 20 | 19 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) : ℝ ⟶ ℂ ) |
| 21 | ssidd | ⊢ ( 𝜑 → ℝ ⊆ ℝ ) | |
| 22 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 23 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 24 | 22 23 | dvres | ⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) ) → ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ↾ ( 𝐵 [,] 𝐶 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) ) ) |
| 25 | 11 20 21 6 24 | syl22anc | ⊢ ( 𝜑 → ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ↾ ( 𝐵 [,] 𝐶 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) ) ) |
| 26 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 27 | 26 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 28 | 12 16 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 29 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 30 | 29 12 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
| 31 | 30 | coscld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 32 | 29 31 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ ) |
| 33 | 11 | resmptd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) = ( 𝑦 ∈ ℝ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 34 | 33 | eqcomd | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) = ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) ) |
| 35 | 34 | oveq2d | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( ℝ D ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) ) ) |
| 36 | 16 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) : ℂ ⟶ ℂ ) |
| 37 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 38 | dvsinax | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) | |
| 39 | 1 38 | syl | ⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 40 | 39 | dmeqd | ⊢ ( 𝜑 → dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 41 | 15 | coscld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 42 | 13 41 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ ) |
| 43 | 42 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℂ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ ) |
| 44 | dmmptg | ⊢ ( ∀ 𝑦 ∈ ℂ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ → dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ℂ ) | |
| 45 | 43 44 | syl | ⊢ ( 𝜑 → dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ℂ ) |
| 46 | 40 45 | eqtr2d | ⊢ ( 𝜑 → ℂ = dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 47 | 10 46 | sseqtrid | ⊢ ( 𝜑 → ℝ ⊆ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 48 | dvres3 | ⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) ) → ( ℝ D ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ↾ ℝ ) ) | |
| 49 | 27 36 37 47 48 | syl22anc | ⊢ ( 𝜑 → ( ℝ D ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ↾ ℝ ) ) |
| 50 | 39 | reseq1d | ⊢ ( 𝜑 → ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ↾ ℝ ) = ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ↾ ℝ ) ) |
| 51 | 11 | resmptd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ↾ ℝ ) = ( 𝑦 ∈ ℝ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 52 | 49 50 51 | 3eqtrd | ⊢ ( 𝜑 → ( ℝ D ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 53 | 35 52 | eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 54 | 27 28 32 53 1 5 | dvmptdivc | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ) |
| 55 | iccntr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) = ( 𝐵 (,) 𝐶 ) ) | |
| 56 | 2 3 55 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) = ( 𝐵 (,) 𝐶 ) ) |
| 57 | 54 56 | reseq12d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) ) = ( ( 𝑦 ∈ ℝ ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) ) |
| 58 | ioossre | ⊢ ( 𝐵 (,) 𝐶 ) ⊆ ℝ | |
| 59 | resmpt | ⊢ ( ( 𝐵 (,) 𝐶 ) ⊆ ℝ → ( ( 𝑦 ∈ ℝ ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ) | |
| 60 | 58 59 | mp1i | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ) |
| 61 | elioore | ⊢ ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) → 𝑦 ∈ ℝ ) | |
| 62 | 61 | recnd | ⊢ ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) → 𝑦 ∈ ℂ ) |
| 63 | 62 41 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 64 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝐴 ∈ ℂ ) |
| 65 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝐴 ≠ 0 ) |
| 66 | 63 64 65 | divcan3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ) → ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = ( cos ‘ ( 𝐴 · 𝑦 ) ) ) |
| 67 | 66 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 68 | 57 60 67 | 3eqtrd | ⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 69 | 9 25 68 | 3eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 70 | 69 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 71 | oveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑥 ) ) | |
| 72 | 71 | fveq2d | ⊢ ( 𝑦 = 𝑥 → ( cos ‘ ( 𝐴 · 𝑦 ) ) = ( cos ‘ ( 𝐴 · 𝑥 ) ) ) |
| 73 | 72 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) ∧ 𝑦 = 𝑥 ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) = ( cos ‘ ( 𝐴 · 𝑥 ) ) ) |
| 74 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) | |
| 75 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝐴 ∈ ℂ ) |
| 76 | 58 11 | sstrid | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ℂ ) |
| 77 | 76 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ℂ ) |
| 78 | 75 77 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 79 | 78 | coscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( cos ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 80 | 70 73 74 79 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) = ( cos ‘ ( 𝐴 · 𝑥 ) ) ) |
| 81 | 80 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( cos ‘ ( 𝐴 · 𝑥 ) ) = ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) ) |
| 82 | 81 | itgeq2dv | ⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( cos ‘ ( 𝐴 · 𝑥 ) ) d 𝑥 = ∫ ( 𝐵 (,) 𝐶 ) ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) d 𝑥 ) |
| 83 | eqidd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) = ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) | |
| 84 | oveq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐶 ) ) | |
| 85 | 84 | fveq2d | ⊢ ( 𝑦 = 𝐶 → ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝐶 ) ) ) |
| 86 | 85 | oveq1d | ⊢ ( 𝑦 = 𝐶 → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
| 87 | 86 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐶 ) → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
| 88 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 89 | 3 | rexrd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 90 | ubicc2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ( 𝐵 [,] 𝐶 ) ) | |
| 91 | 88 89 4 90 | syl3anc | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 92 | 3 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 93 | 1 92 | mulcld | ⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 94 | 93 | sincld | ⊢ ( 𝜑 → ( sin ‘ ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
| 95 | 94 1 5 | divcld | ⊢ ( 𝜑 → ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ∈ ℂ ) |
| 96 | 83 87 91 95 | fvmptd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) = ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
| 97 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐵 ) ) | |
| 98 | 97 | fveq2d | ⊢ ( 𝑦 = 𝐵 → ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝐵 ) ) ) |
| 99 | 98 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
| 100 | 99 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
| 101 | lbicc2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ( 𝐵 [,] 𝐶 ) ) | |
| 102 | 88 89 4 101 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 103 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 104 | 1 103 | mulcld | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 105 | 104 | sincld | ⊢ ( 𝜑 → ( sin ‘ ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
| 106 | 105 1 5 | divcld | ⊢ ( 𝜑 → ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ∈ ℂ ) |
| 107 | 83 100 102 106 | fvmptd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) = ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
| 108 | 96 107 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) = ( ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
| 109 | coscn | ⊢ cos ∈ ( ℂ –cn→ ℂ ) | |
| 110 | 109 | a1i | ⊢ ( 𝜑 → cos ∈ ( ℂ –cn→ ℂ ) ) |
| 111 | 76 1 37 | constcncfg | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 112 | 76 37 | idcncfg | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝑦 ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 113 | 111 112 | mulcncf | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( 𝐴 · 𝑦 ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 114 | 110 113 | cncfmpt1f | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 115 | 69 114 | eqeltrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 116 | ioossicc | ⊢ ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 [,] 𝐶 ) | |
| 117 | 116 | a1i | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 [,] 𝐶 ) ) |
| 118 | ioombl | ⊢ ( 𝐵 (,) 𝐶 ) ∈ dom vol | |
| 119 | 118 | a1i | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ∈ dom vol ) |
| 120 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐴 ∈ ℂ ) |
| 121 | 6 10 | sstrdi | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℂ ) |
| 122 | 121 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑦 ∈ ℂ ) |
| 123 | 120 122 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
| 124 | 123 | coscld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 125 | 121 1 37 | constcncfg | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 126 | 121 37 | idcncfg | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝑦 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 127 | 125 126 | mulcncf | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( 𝐴 · 𝑦 ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 128 | 110 127 | cncfmpt1f | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 129 | cniccibl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) | |
| 130 | 2 3 128 129 | syl3anc | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) |
| 131 | 117 119 124 130 | iblss | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) |
| 132 | 69 131 | eqeltrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ∈ 𝐿1 ) |
| 133 | sincn | ⊢ sin ∈ ( ℂ –cn→ ℂ ) | |
| 134 | 133 | a1i | ⊢ ( 𝜑 → sin ∈ ( ℂ –cn→ ℂ ) ) |
| 135 | 134 127 | cncfmpt1f | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 136 | neneq | ⊢ ( 𝐴 ≠ 0 → ¬ 𝐴 = 0 ) | |
| 137 | elsni | ⊢ ( 𝐴 ∈ { 0 } → 𝐴 = 0 ) | |
| 138 | 137 | con3i | ⊢ ( ¬ 𝐴 = 0 → ¬ 𝐴 ∈ { 0 } ) |
| 139 | 5 136 138 | 3syl | ⊢ ( 𝜑 → ¬ 𝐴 ∈ { 0 } ) |
| 140 | 1 139 | eldifd | ⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
| 141 | difssd | ⊢ ( 𝜑 → ( ℂ ∖ { 0 } ) ⊆ ℂ ) | |
| 142 | 121 140 141 | constcncfg | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ( ℂ ∖ { 0 } ) ) ) |
| 143 | 135 142 | divcncf | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 144 | 2 3 4 115 132 143 | ftc2 | ⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) ) |
| 145 | 94 105 1 5 | divsubdird | ⊢ ( 𝜑 → ( ( ( sin ‘ ( 𝐴 · 𝐶 ) ) − ( sin ‘ ( 𝐴 · 𝐵 ) ) ) / 𝐴 ) = ( ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
| 146 | 108 144 145 | 3eqtr4d | ⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( sin ‘ ( 𝐴 · 𝐶 ) ) − ( sin ‘ ( 𝐴 · 𝐵 ) ) ) / 𝐴 ) ) |
| 147 | 82 146 | eqtrd | ⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( cos ‘ ( 𝐴 · 𝑥 ) ) d 𝑥 = ( ( ( sin ‘ ( 𝐴 · 𝐶 ) ) − ( sin ‘ ( 𝐴 · 𝐵 ) ) ) / 𝐴 ) ) |