This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exercise: the integral of x |-> cos a x on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgcoscmulx.a | |- ( ph -> A e. CC ) |
|
| itgcoscmulx.b | |- ( ph -> B e. RR ) |
||
| itgcoscmulx.c | |- ( ph -> C e. RR ) |
||
| itgcoscmulx.blec | |- ( ph -> B <_ C ) |
||
| itgcoscmulx.an0 | |- ( ph -> A =/= 0 ) |
||
| Assertion | itgcoscmulx | |- ( ph -> S. ( B (,) C ) ( cos ` ( A x. x ) ) _d x = ( ( ( sin ` ( A x. C ) ) - ( sin ` ( A x. B ) ) ) / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgcoscmulx.a | |- ( ph -> A e. CC ) |
|
| 2 | itgcoscmulx.b | |- ( ph -> B e. RR ) |
|
| 3 | itgcoscmulx.c | |- ( ph -> C e. RR ) |
|
| 4 | itgcoscmulx.blec | |- ( ph -> B <_ C ) |
|
| 5 | itgcoscmulx.an0 | |- ( ph -> A =/= 0 ) |
|
| 6 | 2 3 | iccssred | |- ( ph -> ( B [,] C ) C_ RR ) |
| 7 | 6 | resmptd | |- ( ph -> ( ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) |` ( B [,] C ) ) = ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |
| 8 | 7 | eqcomd | |- ( ph -> ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) = ( ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) |` ( B [,] C ) ) ) |
| 9 | 8 | oveq2d | |- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) = ( RR _D ( ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) |` ( B [,] C ) ) ) ) |
| 10 | ax-resscn | |- RR C_ CC |
|
| 11 | 10 | a1i | |- ( ph -> RR C_ CC ) |
| 12 | 11 | sselda | |- ( ( ph /\ y e. RR ) -> y e. CC ) |
| 13 | 1 | adantr | |- ( ( ph /\ y e. CC ) -> A e. CC ) |
| 14 | simpr | |- ( ( ph /\ y e. CC ) -> y e. CC ) |
|
| 15 | 13 14 | mulcld | |- ( ( ph /\ y e. CC ) -> ( A x. y ) e. CC ) |
| 16 | 15 | sincld | |- ( ( ph /\ y e. CC ) -> ( sin ` ( A x. y ) ) e. CC ) |
| 17 | 5 | adantr | |- ( ( ph /\ y e. CC ) -> A =/= 0 ) |
| 18 | 16 13 17 | divcld | |- ( ( ph /\ y e. CC ) -> ( ( sin ` ( A x. y ) ) / A ) e. CC ) |
| 19 | 12 18 | syldan | |- ( ( ph /\ y e. RR ) -> ( ( sin ` ( A x. y ) ) / A ) e. CC ) |
| 20 | 19 | fmpttd | |- ( ph -> ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) : RR --> CC ) |
| 21 | ssidd | |- ( ph -> RR C_ RR ) |
|
| 22 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 23 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 24 | 22 23 | dvres | |- ( ( ( RR C_ CC /\ ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) : RR --> CC ) /\ ( RR C_ RR /\ ( B [,] C ) C_ RR ) ) -> ( RR _D ( ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) |` ( B [,] C ) ) ) = ( ( RR _D ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) ) ) |
| 25 | 11 20 21 6 24 | syl22anc | |- ( ph -> ( RR _D ( ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) |` ( B [,] C ) ) ) = ( ( RR _D ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) ) ) |
| 26 | reelprrecn | |- RR e. { RR , CC } |
|
| 27 | 26 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 28 | 12 16 | syldan | |- ( ( ph /\ y e. RR ) -> ( sin ` ( A x. y ) ) e. CC ) |
| 29 | 1 | adantr | |- ( ( ph /\ y e. RR ) -> A e. CC ) |
| 30 | 29 12 | mulcld | |- ( ( ph /\ y e. RR ) -> ( A x. y ) e. CC ) |
| 31 | 30 | coscld | |- ( ( ph /\ y e. RR ) -> ( cos ` ( A x. y ) ) e. CC ) |
| 32 | 29 31 | mulcld | |- ( ( ph /\ y e. RR ) -> ( A x. ( cos ` ( A x. y ) ) ) e. CC ) |
| 33 | 11 | resmptd | |- ( ph -> ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) = ( y e. RR |-> ( sin ` ( A x. y ) ) ) ) |
| 34 | 33 | eqcomd | |- ( ph -> ( y e. RR |-> ( sin ` ( A x. y ) ) ) = ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) ) |
| 35 | 34 | oveq2d | |- ( ph -> ( RR _D ( y e. RR |-> ( sin ` ( A x. y ) ) ) ) = ( RR _D ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) ) ) |
| 36 | 16 | fmpttd | |- ( ph -> ( y e. CC |-> ( sin ` ( A x. y ) ) ) : CC --> CC ) |
| 37 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 38 | dvsinax | |- ( A e. CC -> ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) = ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
|
| 39 | 1 38 | syl | |- ( ph -> ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) = ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
| 40 | 39 | dmeqd | |- ( ph -> dom ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) = dom ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
| 41 | 15 | coscld | |- ( ( ph /\ y e. CC ) -> ( cos ` ( A x. y ) ) e. CC ) |
| 42 | 13 41 | mulcld | |- ( ( ph /\ y e. CC ) -> ( A x. ( cos ` ( A x. y ) ) ) e. CC ) |
| 43 | 42 | ralrimiva | |- ( ph -> A. y e. CC ( A x. ( cos ` ( A x. y ) ) ) e. CC ) |
| 44 | dmmptg | |- ( A. y e. CC ( A x. ( cos ` ( A x. y ) ) ) e. CC -> dom ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) = CC ) |
|
| 45 | 43 44 | syl | |- ( ph -> dom ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) = CC ) |
| 46 | 40 45 | eqtr2d | |- ( ph -> CC = dom ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) ) |
| 47 | 10 46 | sseqtrid | |- ( ph -> RR C_ dom ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) ) |
| 48 | dvres3 | |- ( ( ( RR e. { RR , CC } /\ ( y e. CC |-> ( sin ` ( A x. y ) ) ) : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) ) ) -> ( RR _D ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) ) = ( ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) |` RR ) ) |
|
| 49 | 27 36 37 47 48 | syl22anc | |- ( ph -> ( RR _D ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) ) = ( ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) |` RR ) ) |
| 50 | 39 | reseq1d | |- ( ph -> ( ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) |` RR ) = ( ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) |` RR ) ) |
| 51 | 11 | resmptd | |- ( ph -> ( ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) |` RR ) = ( y e. RR |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
| 52 | 49 50 51 | 3eqtrd | |- ( ph -> ( RR _D ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) ) = ( y e. RR |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
| 53 | 35 52 | eqtrd | |- ( ph -> ( RR _D ( y e. RR |-> ( sin ` ( A x. y ) ) ) ) = ( y e. RR |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
| 54 | 27 28 32 53 1 5 | dvmptdivc | |- ( ph -> ( RR _D ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) ) = ( y e. RR |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) ) |
| 55 | iccntr | |- ( ( B e. RR /\ C e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) = ( B (,) C ) ) |
|
| 56 | 2 3 55 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) = ( B (,) C ) ) |
| 57 | 54 56 | reseq12d | |- ( ph -> ( ( RR _D ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) ) = ( ( y e. RR |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) |` ( B (,) C ) ) ) |
| 58 | ioossre | |- ( B (,) C ) C_ RR |
|
| 59 | resmpt | |- ( ( B (,) C ) C_ RR -> ( ( y e. RR |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) |` ( B (,) C ) ) = ( y e. ( B (,) C ) |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) ) |
|
| 60 | 58 59 | mp1i | |- ( ph -> ( ( y e. RR |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) |` ( B (,) C ) ) = ( y e. ( B (,) C ) |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) ) |
| 61 | elioore | |- ( y e. ( B (,) C ) -> y e. RR ) |
|
| 62 | 61 | recnd | |- ( y e. ( B (,) C ) -> y e. CC ) |
| 63 | 62 41 | sylan2 | |- ( ( ph /\ y e. ( B (,) C ) ) -> ( cos ` ( A x. y ) ) e. CC ) |
| 64 | 1 | adantr | |- ( ( ph /\ y e. ( B (,) C ) ) -> A e. CC ) |
| 65 | 5 | adantr | |- ( ( ph /\ y e. ( B (,) C ) ) -> A =/= 0 ) |
| 66 | 63 64 65 | divcan3d | |- ( ( ph /\ y e. ( B (,) C ) ) -> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) = ( cos ` ( A x. y ) ) ) |
| 67 | 66 | mpteq2dva | |- ( ph -> ( y e. ( B (,) C ) |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) = ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) ) |
| 68 | 57 60 67 | 3eqtrd | |- ( ph -> ( ( RR _D ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) ) = ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) ) |
| 69 | 9 25 68 | 3eqtrd | |- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) = ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) ) |
| 70 | 69 | adantr | |- ( ( ph /\ x e. ( B (,) C ) ) -> ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) = ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) ) |
| 71 | oveq2 | |- ( y = x -> ( A x. y ) = ( A x. x ) ) |
|
| 72 | 71 | fveq2d | |- ( y = x -> ( cos ` ( A x. y ) ) = ( cos ` ( A x. x ) ) ) |
| 73 | 72 | adantl | |- ( ( ( ph /\ x e. ( B (,) C ) ) /\ y = x ) -> ( cos ` ( A x. y ) ) = ( cos ` ( A x. x ) ) ) |
| 74 | simpr | |- ( ( ph /\ x e. ( B (,) C ) ) -> x e. ( B (,) C ) ) |
|
| 75 | 1 | adantr | |- ( ( ph /\ x e. ( B (,) C ) ) -> A e. CC ) |
| 76 | 58 11 | sstrid | |- ( ph -> ( B (,) C ) C_ CC ) |
| 77 | 76 | sselda | |- ( ( ph /\ x e. ( B (,) C ) ) -> x e. CC ) |
| 78 | 75 77 | mulcld | |- ( ( ph /\ x e. ( B (,) C ) ) -> ( A x. x ) e. CC ) |
| 79 | 78 | coscld | |- ( ( ph /\ x e. ( B (,) C ) ) -> ( cos ` ( A x. x ) ) e. CC ) |
| 80 | 70 73 74 79 | fvmptd | |- ( ( ph /\ x e. ( B (,) C ) ) -> ( ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) ` x ) = ( cos ` ( A x. x ) ) ) |
| 81 | 80 | eqcomd | |- ( ( ph /\ x e. ( B (,) C ) ) -> ( cos ` ( A x. x ) ) = ( ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) ` x ) ) |
| 82 | 81 | itgeq2dv | |- ( ph -> S. ( B (,) C ) ( cos ` ( A x. x ) ) _d x = S. ( B (,) C ) ( ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) ` x ) _d x ) |
| 83 | eqidd | |- ( ph -> ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) = ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |
|
| 84 | oveq2 | |- ( y = C -> ( A x. y ) = ( A x. C ) ) |
|
| 85 | 84 | fveq2d | |- ( y = C -> ( sin ` ( A x. y ) ) = ( sin ` ( A x. C ) ) ) |
| 86 | 85 | oveq1d | |- ( y = C -> ( ( sin ` ( A x. y ) ) / A ) = ( ( sin ` ( A x. C ) ) / A ) ) |
| 87 | 86 | adantl | |- ( ( ph /\ y = C ) -> ( ( sin ` ( A x. y ) ) / A ) = ( ( sin ` ( A x. C ) ) / A ) ) |
| 88 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 89 | 3 | rexrd | |- ( ph -> C e. RR* ) |
| 90 | ubicc2 | |- ( ( B e. RR* /\ C e. RR* /\ B <_ C ) -> C e. ( B [,] C ) ) |
|
| 91 | 88 89 4 90 | syl3anc | |- ( ph -> C e. ( B [,] C ) ) |
| 92 | 3 | recnd | |- ( ph -> C e. CC ) |
| 93 | 1 92 | mulcld | |- ( ph -> ( A x. C ) e. CC ) |
| 94 | 93 | sincld | |- ( ph -> ( sin ` ( A x. C ) ) e. CC ) |
| 95 | 94 1 5 | divcld | |- ( ph -> ( ( sin ` ( A x. C ) ) / A ) e. CC ) |
| 96 | 83 87 91 95 | fvmptd | |- ( ph -> ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` C ) = ( ( sin ` ( A x. C ) ) / A ) ) |
| 97 | oveq2 | |- ( y = B -> ( A x. y ) = ( A x. B ) ) |
|
| 98 | 97 | fveq2d | |- ( y = B -> ( sin ` ( A x. y ) ) = ( sin ` ( A x. B ) ) ) |
| 99 | 98 | oveq1d | |- ( y = B -> ( ( sin ` ( A x. y ) ) / A ) = ( ( sin ` ( A x. B ) ) / A ) ) |
| 100 | 99 | adantl | |- ( ( ph /\ y = B ) -> ( ( sin ` ( A x. y ) ) / A ) = ( ( sin ` ( A x. B ) ) / A ) ) |
| 101 | lbicc2 | |- ( ( B e. RR* /\ C e. RR* /\ B <_ C ) -> B e. ( B [,] C ) ) |
|
| 102 | 88 89 4 101 | syl3anc | |- ( ph -> B e. ( B [,] C ) ) |
| 103 | 2 | recnd | |- ( ph -> B e. CC ) |
| 104 | 1 103 | mulcld | |- ( ph -> ( A x. B ) e. CC ) |
| 105 | 104 | sincld | |- ( ph -> ( sin ` ( A x. B ) ) e. CC ) |
| 106 | 105 1 5 | divcld | |- ( ph -> ( ( sin ` ( A x. B ) ) / A ) e. CC ) |
| 107 | 83 100 102 106 | fvmptd | |- ( ph -> ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` B ) = ( ( sin ` ( A x. B ) ) / A ) ) |
| 108 | 96 107 | oveq12d | |- ( ph -> ( ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` B ) ) = ( ( ( sin ` ( A x. C ) ) / A ) - ( ( sin ` ( A x. B ) ) / A ) ) ) |
| 109 | coscn | |- cos e. ( CC -cn-> CC ) |
|
| 110 | 109 | a1i | |- ( ph -> cos e. ( CC -cn-> CC ) ) |
| 111 | 76 1 37 | constcncfg | |- ( ph -> ( y e. ( B (,) C ) |-> A ) e. ( ( B (,) C ) -cn-> CC ) ) |
| 112 | 76 37 | idcncfg | |- ( ph -> ( y e. ( B (,) C ) |-> y ) e. ( ( B (,) C ) -cn-> CC ) ) |
| 113 | 111 112 | mulcncf | |- ( ph -> ( y e. ( B (,) C ) |-> ( A x. y ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
| 114 | 110 113 | cncfmpt1f | |- ( ph -> ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
| 115 | 69 114 | eqeltrd | |- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
| 116 | ioossicc | |- ( B (,) C ) C_ ( B [,] C ) |
|
| 117 | 116 | a1i | |- ( ph -> ( B (,) C ) C_ ( B [,] C ) ) |
| 118 | ioombl | |- ( B (,) C ) e. dom vol |
|
| 119 | 118 | a1i | |- ( ph -> ( B (,) C ) e. dom vol ) |
| 120 | 1 | adantr | |- ( ( ph /\ y e. ( B [,] C ) ) -> A e. CC ) |
| 121 | 6 10 | sstrdi | |- ( ph -> ( B [,] C ) C_ CC ) |
| 122 | 121 | sselda | |- ( ( ph /\ y e. ( B [,] C ) ) -> y e. CC ) |
| 123 | 120 122 | mulcld | |- ( ( ph /\ y e. ( B [,] C ) ) -> ( A x. y ) e. CC ) |
| 124 | 123 | coscld | |- ( ( ph /\ y e. ( B [,] C ) ) -> ( cos ` ( A x. y ) ) e. CC ) |
| 125 | 121 1 37 | constcncfg | |- ( ph -> ( y e. ( B [,] C ) |-> A ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 126 | 121 37 | idcncfg | |- ( ph -> ( y e. ( B [,] C ) |-> y ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 127 | 125 126 | mulcncf | |- ( ph -> ( y e. ( B [,] C ) |-> ( A x. y ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 128 | 110 127 | cncfmpt1f | |- ( ph -> ( y e. ( B [,] C ) |-> ( cos ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 129 | cniccibl | |- ( ( B e. RR /\ C e. RR /\ ( y e. ( B [,] C ) |-> ( cos ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) -> ( y e. ( B [,] C ) |-> ( cos ` ( A x. y ) ) ) e. L^1 ) |
|
| 130 | 2 3 128 129 | syl3anc | |- ( ph -> ( y e. ( B [,] C ) |-> ( cos ` ( A x. y ) ) ) e. L^1 ) |
| 131 | 117 119 124 130 | iblss | |- ( ph -> ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) e. L^1 ) |
| 132 | 69 131 | eqeltrd | |- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) e. L^1 ) |
| 133 | sincn | |- sin e. ( CC -cn-> CC ) |
|
| 134 | 133 | a1i | |- ( ph -> sin e. ( CC -cn-> CC ) ) |
| 135 | 134 127 | cncfmpt1f | |- ( ph -> ( y e. ( B [,] C ) |-> ( sin ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 136 | neneq | |- ( A =/= 0 -> -. A = 0 ) |
|
| 137 | elsni | |- ( A e. { 0 } -> A = 0 ) |
|
| 138 | 137 | con3i | |- ( -. A = 0 -> -. A e. { 0 } ) |
| 139 | 5 136 138 | 3syl | |- ( ph -> -. A e. { 0 } ) |
| 140 | 1 139 | eldifd | |- ( ph -> A e. ( CC \ { 0 } ) ) |
| 141 | difssd | |- ( ph -> ( CC \ { 0 } ) C_ CC ) |
|
| 142 | 121 140 141 | constcncfg | |- ( ph -> ( y e. ( B [,] C ) |-> A ) e. ( ( B [,] C ) -cn-> ( CC \ { 0 } ) ) ) |
| 143 | 135 142 | divcncf | |- ( ph -> ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 144 | 2 3 4 115 132 143 | ftc2 | |- ( ph -> S. ( B (,) C ) ( ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) ` x ) _d x = ( ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` B ) ) ) |
| 145 | 94 105 1 5 | divsubdird | |- ( ph -> ( ( ( sin ` ( A x. C ) ) - ( sin ` ( A x. B ) ) ) / A ) = ( ( ( sin ` ( A x. C ) ) / A ) - ( ( sin ` ( A x. B ) ) / A ) ) ) |
| 146 | 108 144 145 | 3eqtr4d | |- ( ph -> S. ( B (,) C ) ( ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) ` x ) _d x = ( ( ( sin ` ( A x. C ) ) - ( sin ` ( A x. B ) ) ) / A ) ) |
| 147 | 82 146 | eqtrd | |- ( ph -> S. ( B (,) C ) ( cos ` ( A x. x ) ) _d x = ( ( ( sin ` ( A x. C ) ) - ( sin ` ( A x. B ) ) ) / A ) ) |