This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative exercise: the derivative with respect to y of sin(Ay), given a constant A . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvsinax | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sinf | ⊢ sin : ℂ ⟶ ℂ | |
| 2 | 1 | a1i | ⊢ ( 𝐴 ∈ ℂ → sin : ℂ ⟶ ℂ ) |
| 3 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) | |
| 4 | 3 | fmpttd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) : ℂ ⟶ ℂ ) |
| 5 | fcompt | ⊢ ( ( sin : ℂ ⟶ ℂ ∧ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) : ℂ ⟶ ℂ ) → ( sin ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) ) ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( sin ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 7 | eqidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) | |
| 8 | oveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑤 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ∧ 𝑦 = 𝑤 ) → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑤 ) ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → 𝑤 ∈ ℂ ) | |
| 11 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝐴 · 𝑤 ) ∈ ℂ ) | |
| 12 | 7 9 10 11 | fvmptd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) = ( 𝐴 · 𝑤 ) ) |
| 13 | 12 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( sin ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) = ( sin ‘ ( 𝐴 · 𝑤 ) ) ) |
| 14 | 13 | mpteq2dva | ⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑤 ) ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝐴 · 𝑤 ) = ( 𝐴 · 𝑦 ) ) | |
| 16 | 15 | fveq2d | ⊢ ( 𝑤 = 𝑦 → ( sin ‘ ( 𝐴 · 𝑤 ) ) = ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 17 | 16 | cbvmptv | ⊢ ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑤 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 18 | 17 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑤 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 19 | 6 14 18 | 3eqtrrd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) = ( sin ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( ℂ D ( sin ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 21 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 22 | 21 | a1i | ⊢ ( 𝐴 ∈ ℂ → ℂ ∈ { ℝ , ℂ } ) |
| 23 | dvsin | ⊢ ( ℂ D sin ) = cos | |
| 24 | 23 | dmeqi | ⊢ dom ( ℂ D sin ) = dom cos |
| 25 | cosf | ⊢ cos : ℂ ⟶ ℂ | |
| 26 | 25 | fdmi | ⊢ dom cos = ℂ |
| 27 | 24 26 | eqtri | ⊢ dom ( ℂ D sin ) = ℂ |
| 28 | 27 | a1i | ⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D sin ) = ℂ ) |
| 29 | id | ⊢ ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) | |
| 30 | 29 | cbvmptv | ⊢ ( 𝑦 ∈ ℂ ↦ 𝑦 ) = ( 𝑤 ∈ ℂ ↦ 𝑤 ) |
| 31 | 30 | oveq2i | ⊢ ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) |
| 32 | 31 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) ) |
| 33 | cnex | ⊢ ℂ ∈ V | |
| 34 | 33 | a1i | ⊢ ( 𝐴 ∈ ℂ → ℂ ∈ V ) |
| 35 | snex | ⊢ { 𝐴 } ∈ V | |
| 36 | 35 | a1i | ⊢ ( 𝐴 ∈ ℂ → { 𝐴 } ∈ V ) |
| 37 | 34 36 | xpexd | ⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) ∈ V ) |
| 38 | 33 | mptex | ⊢ ( 𝑤 ∈ ℂ ↦ 𝑤 ) ∈ V |
| 39 | 38 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ 𝑤 ) ∈ V ) |
| 40 | offval3 | ⊢ ( ( ( ℂ × { 𝐴 } ) ∈ V ∧ ( 𝑤 ∈ ℂ ↦ 𝑤 ) ∈ V ) → ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) = ( 𝑦 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) ) | |
| 41 | 37 39 40 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) = ( 𝑦 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) ) |
| 42 | fconst6g | ⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) | |
| 43 | 42 | fdmd | ⊢ ( 𝐴 ∈ ℂ → dom ( ℂ × { 𝐴 } ) = ℂ ) |
| 44 | eqid | ⊢ ( 𝑤 ∈ ℂ ↦ 𝑤 ) = ( 𝑤 ∈ ℂ ↦ 𝑤 ) | |
| 45 | id | ⊢ ( 𝑤 ∈ ℂ → 𝑤 ∈ ℂ ) | |
| 46 | 44 45 | fmpti | ⊢ ( 𝑤 ∈ ℂ ↦ 𝑤 ) : ℂ ⟶ ℂ |
| 47 | 46 | fdmi | ⊢ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) = ℂ |
| 48 | 47 | a1i | ⊢ ( 𝐴 ∈ ℂ → dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) = ℂ ) |
| 49 | 43 48 | ineq12d | ⊢ ( 𝐴 ∈ ℂ → ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) = ( ℂ ∩ ℂ ) ) |
| 50 | inidm | ⊢ ( ℂ ∩ ℂ ) = ℂ | |
| 51 | 50 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ℂ ∩ ℂ ) = ℂ ) |
| 52 | 49 51 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) = ℂ ) |
| 53 | 52 | mpteq1d | ⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) ) |
| 54 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) = 𝐴 ) | |
| 55 | eqidd | ⊢ ( 𝑦 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ 𝑤 ) = ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) | |
| 56 | simpr | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑤 = 𝑦 ) → 𝑤 = 𝑦 ) | |
| 57 | id | ⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) | |
| 58 | 55 56 57 57 | fvmptd | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) = 𝑦 ) |
| 59 | 58 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) = 𝑦 ) |
| 60 | 54 59 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) = ( 𝐴 · 𝑦 ) ) |
| 61 | 60 | mpteq2dva | ⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 62 | 53 61 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 63 | 32 41 62 | 3eqtrrd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) = ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) |
| 64 | 63 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( ℂ D ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ) |
| 65 | eqid | ⊢ ( 𝑦 ∈ ℂ ↦ 𝑦 ) = ( 𝑦 ∈ ℂ ↦ 𝑦 ) | |
| 66 | 65 57 | fmpti | ⊢ ( 𝑦 ∈ ℂ ↦ 𝑦 ) : ℂ ⟶ ℂ |
| 67 | 66 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ 𝑦 ) : ℂ ⟶ ℂ ) |
| 68 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 69 | 21 | a1i | ⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
| 70 | 69 | dvmptid | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ 1 ) ) |
| 71 | 70 | mptru | ⊢ ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ 1 ) |
| 72 | 71 | dmeqi | ⊢ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = dom ( 𝑦 ∈ ℂ ↦ 1 ) |
| 73 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 74 | 73 | rgenw | ⊢ ∀ 𝑦 ∈ ℂ 1 ∈ ℂ |
| 75 | eqid | ⊢ ( 𝑦 ∈ ℂ ↦ 1 ) = ( 𝑦 ∈ ℂ ↦ 1 ) | |
| 76 | 75 | fmpt | ⊢ ( ∀ 𝑦 ∈ ℂ 1 ∈ ℂ ↔ ( 𝑦 ∈ ℂ ↦ 1 ) : ℂ ⟶ ℂ ) |
| 77 | 74 76 | mpbi | ⊢ ( 𝑦 ∈ ℂ ↦ 1 ) : ℂ ⟶ ℂ |
| 78 | 77 | fdmi | ⊢ dom ( 𝑦 ∈ ℂ ↦ 1 ) = ℂ |
| 79 | 72 78 | eqtri | ⊢ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ℂ |
| 80 | 79 | a1i | ⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ℂ ) |
| 81 | 22 67 68 80 | dvcmulf | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ) |
| 82 | 64 81 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ) |
| 83 | 82 | dmeqd | ⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = dom ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ) |
| 84 | ovexd | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ∈ V ) | |
| 85 | offval3 | ⊢ ( ( ( ℂ × { 𝐴 } ) ∈ V ∧ ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ∈ V ) → ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) ) | |
| 86 | 37 84 85 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 87 | 86 | dmeqd | ⊢ ( 𝐴 ∈ ℂ → dom ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = dom ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 88 | 43 80 | ineq12d | ⊢ ( 𝐴 ∈ ℂ → ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = ( ℂ ∩ ℂ ) ) |
| 89 | 88 51 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = ℂ ) |
| 90 | 89 | mpteq1d | ⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 91 | 90 | dmeqd | ⊢ ( 𝐴 ∈ ℂ → dom ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) = dom ( 𝑤 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 92 | eqid | ⊢ ( 𝑤 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) | |
| 93 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) = 𝐴 ) | |
| 94 | 71 | fveq1i | ⊢ ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) = ( ( 𝑦 ∈ ℂ ↦ 1 ) ‘ 𝑤 ) |
| 95 | 94 | a1i | ⊢ ( 𝑤 ∈ ℂ → ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) = ( ( 𝑦 ∈ ℂ ↦ 1 ) ‘ 𝑤 ) ) |
| 96 | eqidd | ⊢ ( 𝑤 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ 1 ) = ( 𝑦 ∈ ℂ ↦ 1 ) ) | |
| 97 | eqidd | ⊢ ( ( 𝑤 ∈ ℂ ∧ 𝑦 = 𝑤 ) → 1 = 1 ) | |
| 98 | 73 | a1i | ⊢ ( 𝑤 ∈ ℂ → 1 ∈ ℂ ) |
| 99 | 96 97 45 98 | fvmptd | ⊢ ( 𝑤 ∈ ℂ → ( ( 𝑦 ∈ ℂ ↦ 1 ) ‘ 𝑤 ) = 1 ) |
| 100 | 95 99 | eqtrd | ⊢ ( 𝑤 ∈ ℂ → ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) = 1 ) |
| 101 | 100 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) = 1 ) |
| 102 | 93 101 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) = ( 𝐴 · 1 ) ) |
| 103 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 · 1 ) ∈ ℂ ) | |
| 104 | 73 103 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) ∈ ℂ ) |
| 105 | 104 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝐴 · 1 ) ∈ ℂ ) |
| 106 | 102 105 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ∈ ℂ ) |
| 107 | 92 106 | dmmptd | ⊢ ( 𝐴 ∈ ℂ → dom ( 𝑤 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) = ℂ ) |
| 108 | 91 107 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → dom ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) = ℂ ) |
| 109 | 83 87 108 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ℂ ) |
| 110 | 22 22 2 4 28 109 | dvcof | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( sin ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 111 | 23 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D sin ) = cos ) |
| 112 | coscn | ⊢ cos ∈ ( ℂ –cn→ ℂ ) | |
| 113 | 112 | a1i | ⊢ ( 𝐴 ∈ ℂ → cos ∈ ( ℂ –cn→ ℂ ) ) |
| 114 | 111 113 | eqeltrd | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D sin ) ∈ ( ℂ –cn→ ℂ ) ) |
| 115 | 33 | mptex | ⊢ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ∈ V |
| 116 | 115 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ∈ V ) |
| 117 | coexg | ⊢ ( ( ( ℂ D sin ) ∈ ( ℂ –cn→ ℂ ) ∧ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ∈ V ) → ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∈ V ) | |
| 118 | 114 116 117 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∈ V ) |
| 119 | ovexd | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∈ V ) | |
| 120 | offval3 | ⊢ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∈ V ∧ ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∈ V ) → ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑤 ∈ ( dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) ) | |
| 121 | 118 119 120 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑤 ∈ ( dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) ) |
| 122 | 4 | frnd | ⊢ ( 𝐴 ∈ ℂ → ran ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ⊆ ℂ ) |
| 123 | 122 28 | sseqtrrd | ⊢ ( 𝐴 ∈ ℂ → ran ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ⊆ dom ( ℂ D sin ) ) |
| 124 | dmcosseq | ⊢ ( ran ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ⊆ dom ( ℂ D sin ) → dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) | |
| 125 | 123 124 | syl | ⊢ ( 𝐴 ∈ ℂ → dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 126 | ovex | ⊢ ( 𝐴 · 𝑦 ) ∈ V | |
| 127 | eqid | ⊢ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) | |
| 128 | 126 127 | dmmpti | ⊢ dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) = ℂ |
| 129 | 128 | a1i | ⊢ ( 𝐴 ∈ ℂ → dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) = ℂ ) |
| 130 | 125 129 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ℂ ) |
| 131 | 130 109 | ineq12d | ⊢ ( 𝐴 ∈ ℂ → ( dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ( ℂ ∩ ℂ ) ) |
| 132 | 131 51 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ℂ ) |
| 133 | 132 | mpteq1d | ⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ( dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) ) |
| 134 | 11 | coscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( cos ‘ ( 𝐴 · 𝑤 ) ) ∈ ℂ ) |
| 135 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 136 | 134 135 | mulcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( cos ‘ ( 𝐴 · 𝑤 ) ) · 𝐴 ) = ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑤 ) ) ) ) |
| 137 | 136 | mpteq2dva | ⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ ( ( cos ‘ ( 𝐴 · 𝑤 ) ) · 𝐴 ) ) = ( 𝑤 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑤 ) ) ) ) ) |
| 138 | 23 | coeq1i | ⊢ ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( cos ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 139 | 138 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( cos ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) |
| 140 | 139 | fveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) = ( ( cos ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) |
| 141 | 4 | ffund | ⊢ ( 𝐴 ∈ ℂ → Fun ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 142 | 141 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → Fun ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 143 | 10 128 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → 𝑤 ∈ dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 144 | fvco | ⊢ ( ( Fun ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ∧ 𝑤 ∈ dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) → ( ( cos ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) = ( cos ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) ) | |
| 145 | 142 143 144 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( cos ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) = ( cos ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) ) |
| 146 | 12 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( cos ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) = ( cos ‘ ( 𝐴 · 𝑤 ) ) ) |
| 147 | 140 145 146 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) = ( cos ‘ ( 𝐴 · 𝑤 ) ) ) |
| 148 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 149 | 0cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 0 ∈ ℂ ) | |
| 150 | 22 68 | dvmptc | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑦 ∈ ℂ ↦ 0 ) ) |
| 151 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) | |
| 152 | 73 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 1 ∈ ℂ ) |
| 153 | 71 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ 1 ) ) |
| 154 | 22 148 149 150 151 152 153 | dvmptmul | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) ) ) |
| 155 | 151 | mul02d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 0 · 𝑦 ) = 0 ) |
| 156 | 148 | mullidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 157 | 155 156 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) = ( 0 + 𝐴 ) ) |
| 158 | 148 | addlidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 0 + 𝐴 ) = 𝐴 ) |
| 159 | 157 158 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) = 𝐴 ) |
| 160 | 159 | mpteq2dva | ⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) ) = ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) |
| 161 | 154 160 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) |
| 162 | 161 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) |
| 163 | eqidd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ∧ 𝑦 = 𝑤 ) → 𝐴 = 𝐴 ) | |
| 164 | 162 163 10 135 | fvmptd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) = 𝐴 ) |
| 165 | 147 164 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) = ( ( cos ‘ ( 𝐴 · 𝑤 ) ) · 𝐴 ) ) |
| 166 | 165 | mpteq2dva | ⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( ( cos ‘ ( 𝐴 · 𝑤 ) ) · 𝐴 ) ) ) |
| 167 | 8 | fveq2d | ⊢ ( 𝑦 = 𝑤 → ( cos ‘ ( 𝐴 · 𝑦 ) ) = ( cos ‘ ( 𝐴 · 𝑤 ) ) ) |
| 168 | 167 | oveq2d | ⊢ ( 𝑦 = 𝑤 → ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) = ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑤 ) ) ) ) |
| 169 | 168 | cbvmptv | ⊢ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑤 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑤 ) ) ) ) |
| 170 | 169 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑤 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑤 ) ) ) ) ) |
| 171 | 137 166 170 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 172 | 121 133 171 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 173 | 20 110 172 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |