This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of iblsplit using bound-variable hypotheses instead of distinct variable conditions". (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblsplitf.X | ⊢ Ⅎ 𝑥 𝜑 | |
| iblsplitf.vol | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) | ||
| iblsplitf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | ||
| iblsplitf.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) | ||
| iblsplitf.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| iblsplitf.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| Assertion | iblsplitf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblsplitf.X | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | iblsplitf.vol | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) | |
| 3 | iblsplitf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | |
| 4 | iblsplitf.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) | |
| 5 | iblsplitf.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 6 | iblsplitf.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑦 𝐶 | |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 | |
| 9 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) | |
| 10 | 7 8 9 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) = ( 𝑦 ∈ 𝑈 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ 𝑈 ) | |
| 12 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝑈 | |
| 13 | 1 12 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) |
| 14 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) |
| 15 | 14 | ex | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ∈ 𝑈 → 𝐶 ∈ ℂ ) ) |
| 16 | 13 15 | ralrimi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑈 𝐶 ∈ ℂ ) |
| 17 | rspcsbela | ⊢ ( ( 𝑦 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 𝐶 ∈ ℂ ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) | |
| 18 | 11 16 17 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
| 19 | 9 | equcoms | ⊢ ( 𝑦 = 𝑥 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 20 | 19 | eqcomd | ⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐶 ) |
| 21 | 8 7 20 | cbvmpt | ⊢ ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 22 | 21 5 | eqeltrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ∈ 𝐿1 ) |
| 23 | 8 7 20 | cbvmpt | ⊢ ( 𝑦 ∈ 𝐵 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
| 24 | 23 6 | eqeltrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ∈ 𝐿1 ) |
| 25 | 2 3 18 22 24 | iblsplit | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑈 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ∈ 𝐿1 ) |
| 26 | 10 25 | eqeltrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ∈ 𝐿1 ) |