This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ico0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } ) | |
| 2 | 1 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ) ) |
| 3 | df-ne | ⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } ≠ ∅ ↔ ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ) | |
| 4 | rabn0 | ⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) | |
| 5 | 3 4 | bitr3i | ⊢ ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ↔ ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 6 | xrlelttr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) → 𝐴 < 𝐵 ) ) | |
| 7 | 6 | 3com23 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) → 𝐴 < 𝐵 ) ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) → 𝐴 < 𝐵 ) ) |
| 9 | 8 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) → 𝐴 < 𝐵 ) ) |
| 10 | qbtwnxr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) | |
| 11 | qre | ⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) | |
| 12 | 11 | rexrd | ⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ* ) |
| 13 | 12 | a1i | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ* ) ) |
| 14 | simpr1 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → 𝐴 ∈ ℝ* ) | |
| 15 | simpl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → 𝑥 ∈ ℝ* ) | |
| 16 | xrltle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 < 𝑥 → 𝐴 ≤ 𝑥 ) ) | |
| 17 | 14 15 16 | syl2anc | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 < 𝑥 → 𝐴 ≤ 𝑥 ) ) |
| 18 | 17 | anim1d | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → ( ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) → ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 19 | 13 18 | anim12d | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) ) |
| 20 | 19 | ex | ⊢ ( 𝑥 ∈ ℝ* → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) ) ) |
| 21 | 12 20 | syl | ⊢ ( 𝑥 ∈ ℚ → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) ) ) |
| 23 | 22 | pm2.43b | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) ) |
| 24 | 23 | reximdv2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 25 | 10 24 | mpd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 26 | 25 | 3expia | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 27 | 9 26 | impbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ↔ 𝐴 < 𝐵 ) ) |
| 28 | 5 27 | bitrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ↔ 𝐴 < 𝐵 ) ) |
| 29 | xrltnle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) | |
| 30 | 28 29 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
| 31 | 30 | con4bid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
| 32 | 2 31 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |