This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed unbounded-above interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icombl1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 [,) +∞ ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 2 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 3 | 2 | a1i | ⊢ ( 𝐴 ∈ ℝ → +∞ ∈ ℝ* ) |
| 4 | ltpnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) | |
| 5 | snunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 < +∞ ) → ( { 𝐴 } ∪ ( 𝐴 (,) +∞ ) ) = ( 𝐴 [,) +∞ ) ) | |
| 6 | 1 3 4 5 | syl3anc | ⊢ ( 𝐴 ∈ ℝ → ( { 𝐴 } ∪ ( 𝐴 (,) +∞ ) ) = ( 𝐴 [,) +∞ ) ) |
| 7 | snssi | ⊢ ( 𝐴 ∈ ℝ → { 𝐴 } ⊆ ℝ ) | |
| 8 | ovolsn | ⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ { 𝐴 } ) = 0 ) | |
| 9 | nulmbl | ⊢ ( ( { 𝐴 } ⊆ ℝ ∧ ( vol* ‘ { 𝐴 } ) = 0 ) → { 𝐴 } ∈ dom vol ) | |
| 10 | 7 8 9 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → { 𝐴 } ∈ dom vol ) |
| 11 | ioombl1 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 (,) +∞ ) ∈ dom vol ) | |
| 12 | 1 11 | syl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 (,) +∞ ) ∈ dom vol ) |
| 13 | unmbl | ⊢ ( ( { 𝐴 } ∈ dom vol ∧ ( 𝐴 (,) +∞ ) ∈ dom vol ) → ( { 𝐴 } ∪ ( 𝐴 (,) +∞ ) ) ∈ dom vol ) | |
| 14 | 10 12 13 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( { 𝐴 } ∪ ( 𝐴 (,) +∞ ) ) ∈ dom vol ) |
| 15 | 6 14 | eqeltrrd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 [,) +∞ ) ∈ dom vol ) |