This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed-below, open-above real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icombl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | ⊢ ( ( 𝐵 [,) +∞ ) ∪ ( 𝐴 [,) 𝐵 ) ) = ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) | |
| 2 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 4 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) | |
| 5 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 6 | 5 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → +∞ ∈ ℝ* ) |
| 7 | xrltle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) | |
| 8 | 2 7 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 10 | pnfge | ⊢ ( 𝐵 ∈ ℝ* → 𝐵 ≤ +∞ ) | |
| 11 | 4 10 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐵 ≤ +∞ ) |
| 12 | icoun | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ +∞ ) ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) = ( 𝐴 [,) +∞ ) ) | |
| 13 | 3 4 6 9 11 12 | syl32anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) = ( 𝐴 [,) +∞ ) ) |
| 14 | 1 13 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 [,) +∞ ) ∪ ( 𝐴 [,) 𝐵 ) ) = ( 𝐴 [,) +∞ ) ) |
| 15 | ssun1 | ⊢ ( 𝐵 [,) +∞ ) ⊆ ( ( 𝐵 [,) +∞ ) ∪ ( 𝐴 [,) 𝐵 ) ) | |
| 16 | 15 14 | sseqtrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 [,) +∞ ) ⊆ ( 𝐴 [,) +∞ ) ) |
| 17 | incom | ⊢ ( ( 𝐵 [,) +∞ ) ∩ ( 𝐴 [,) 𝐵 ) ) = ( ( 𝐴 [,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) | |
| 18 | icodisj | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) = ∅ ) | |
| 19 | 5 18 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) = ∅ ) |
| 20 | 3 4 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) = ∅ ) |
| 21 | 17 20 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 [,) +∞ ) ∩ ( 𝐴 [,) 𝐵 ) ) = ∅ ) |
| 22 | uneqdifeq | ⊢ ( ( ( 𝐵 [,) +∞ ) ⊆ ( 𝐴 [,) +∞ ) ∧ ( ( 𝐵 [,) +∞ ) ∩ ( 𝐴 [,) 𝐵 ) ) = ∅ ) → ( ( ( 𝐵 [,) +∞ ) ∪ ( 𝐴 [,) 𝐵 ) ) = ( 𝐴 [,) +∞ ) ↔ ( ( 𝐴 [,) +∞ ) ∖ ( 𝐵 [,) +∞ ) ) = ( 𝐴 [,) 𝐵 ) ) ) | |
| 23 | 16 21 22 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐵 [,) +∞ ) ∪ ( 𝐴 [,) 𝐵 ) ) = ( 𝐴 [,) +∞ ) ↔ ( ( 𝐴 [,) +∞ ) ∖ ( 𝐵 [,) +∞ ) ) = ( 𝐴 [,) 𝐵 ) ) ) |
| 24 | 14 23 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,) +∞ ) ∖ ( 𝐵 [,) +∞ ) ) = ( 𝐴 [,) 𝐵 ) ) |
| 25 | icombl1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 [,) +∞ ) ∈ dom vol ) | |
| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,) +∞ ) ∈ dom vol ) |
| 27 | xrleloe | ⊢ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐵 ≤ +∞ ↔ ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) ) | |
| 28 | 4 6 27 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 ≤ +∞ ↔ ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) ) |
| 29 | 11 28 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) |
| 30 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 31 | xrre2 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < +∞ ) ) → 𝐵 ∈ ℝ ) | |
| 32 | 31 | expr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ → 𝐵 ∈ ℝ ) ) |
| 33 | 3 4 6 30 32 | syl31anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ → 𝐵 ∈ ℝ ) ) |
| 34 | 33 | orim1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) ) |
| 35 | 29 34 | mpd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) |
| 36 | icombl1 | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 [,) +∞ ) ∈ dom vol ) | |
| 37 | oveq1 | ⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) = ( +∞ [,) +∞ ) ) | |
| 38 | pnfge | ⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) | |
| 39 | 5 38 | ax-mp | ⊢ +∞ ≤ +∞ |
| 40 | ico0 | ⊢ ( ( +∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( +∞ [,) +∞ ) = ∅ ↔ +∞ ≤ +∞ ) ) | |
| 41 | 5 5 40 | mp2an | ⊢ ( ( +∞ [,) +∞ ) = ∅ ↔ +∞ ≤ +∞ ) |
| 42 | 39 41 | mpbir | ⊢ ( +∞ [,) +∞ ) = ∅ |
| 43 | 37 42 | eqtrdi | ⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) = ∅ ) |
| 44 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 45 | 43 44 | eqeltrdi | ⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
| 46 | 36 45 | jaoi | ⊢ ( ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
| 47 | 35 46 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
| 48 | difmbl | ⊢ ( ( ( 𝐴 [,) +∞ ) ∈ dom vol ∧ ( 𝐵 [,) +∞ ) ∈ dom vol ) → ( ( 𝐴 [,) +∞ ) ∖ ( 𝐵 [,) +∞ ) ) ∈ dom vol ) | |
| 49 | 26 47 48 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,) +∞ ) ∖ ( 𝐵 [,) +∞ ) ) ∈ dom vol ) |
| 50 | 24 49 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
| 51 | ico0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) | |
| 52 | 2 51 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
| 53 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → 𝐵 ∈ ℝ* ) | |
| 54 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) |
| 55 | 53 54 | xrlenltd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 56 | 52 55 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ ¬ 𝐴 < 𝐵 ) ) |
| 57 | 56 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 [,) 𝐵 ) = ∅ ) |
| 58 | 57 44 | eqeltrdi | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
| 59 | 50 58 | pm2.61dan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |