This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of one end of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) | |
| 2 | iccid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
| 4 | 3 | uneq1d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,] 𝐴 ) ∪ ( 𝐴 (,) 𝐵 ) ) = ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) ) |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) | |
| 6 | 1 | xrleidd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐴 ) |
| 7 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 8 | df-icc | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 9 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 10 | xrltnle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴 ) ) | |
| 11 | df-ico | ⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 12 | xrlelttr | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → 𝑤 < 𝐵 ) ) | |
| 13 | xrltle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 ≤ 𝑤 ) ) | |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 ≤ 𝑤 ) ) |
| 15 | 14 | adantld | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤 ) → 𝐴 ≤ 𝑤 ) ) |
| 16 | 8 9 10 11 12 15 | ixxun | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( ( 𝐴 [,] 𝐴 ) ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
| 17 | 1 1 5 6 7 16 | syl32anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,] 𝐴 ) ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
| 18 | 4 17 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |