This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A canonical version of infxpen , by a completely different approach (although it uses infxpen via xpomen ). Using Cantor's normal form, we can show that A ^o B respects equinumerosity ( oef1o ), so that all the steps of (om ^ W ) x. ( om ^ W ) ~_om ^ ( 2 W ) ~ (om ^ 2 ) ^ W ~_om ^ W can be verified using bijections to do the ordinal commutations. (The assumption on N can be satisfied using cnfcom3c .) (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infxpenc.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| infxpenc.2 | ⊢ ( 𝜑 → ω ⊆ 𝐴 ) | ||
| infxpenc.3 | ⊢ ( 𝜑 → 𝑊 ∈ ( On ∖ 1o ) ) | ||
| infxpenc.4 | ⊢ ( 𝜑 → 𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω ) | ||
| infxpenc.5 | ⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) | ||
| infxpenc.6 | ⊢ ( 𝜑 → 𝑁 : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ) | ||
| infxpenc.k | ⊢ 𝐾 = ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) | ||
| infxpenc.h | ⊢ 𝐻 = ( ( ( ω CNF 𝑊 ) ∘ 𝐾 ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) | ||
| infxpenc.l | ⊢ 𝐿 = ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( 𝑌 ∘ ◡ 𝑋 ) ) ) ) | ||
| infxpenc.x | ⊢ 𝑋 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) | ||
| infxpenc.y | ⊢ 𝑌 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) | ||
| infxpenc.j | ⊢ 𝐽 = ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ 𝐿 ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) | ||
| infxpenc.z | ⊢ 𝑍 = ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) | ||
| infxpenc.t | ⊢ 𝑇 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝑁 ‘ 𝑥 ) , ( 𝑁 ‘ 𝑦 ) 〉 ) | ||
| infxpenc.g | ⊢ 𝐺 = ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) | ||
| Assertion | infxpenc | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxpenc.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 2 | infxpenc.2 | ⊢ ( 𝜑 → ω ⊆ 𝐴 ) | |
| 3 | infxpenc.3 | ⊢ ( 𝜑 → 𝑊 ∈ ( On ∖ 1o ) ) | |
| 4 | infxpenc.4 | ⊢ ( 𝜑 → 𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω ) | |
| 5 | infxpenc.5 | ⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) | |
| 6 | infxpenc.6 | ⊢ ( 𝜑 → 𝑁 : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ) | |
| 7 | infxpenc.k | ⊢ 𝐾 = ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) | |
| 8 | infxpenc.h | ⊢ 𝐻 = ( ( ( ω CNF 𝑊 ) ∘ 𝐾 ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) | |
| 9 | infxpenc.l | ⊢ 𝐿 = ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( 𝑌 ∘ ◡ 𝑋 ) ) ) ) | |
| 10 | infxpenc.x | ⊢ 𝑋 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) | |
| 11 | infxpenc.y | ⊢ 𝑌 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) | |
| 12 | infxpenc.j | ⊢ 𝐽 = ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ 𝐿 ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) | |
| 13 | infxpenc.z | ⊢ 𝑍 = ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) | |
| 14 | infxpenc.t | ⊢ 𝑇 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝑁 ‘ 𝑥 ) , ( 𝑁 ‘ 𝑦 ) 〉 ) | |
| 15 | infxpenc.g | ⊢ 𝐺 = ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) | |
| 16 | f1ocnv | ⊢ ( 𝑁 : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) → ◡ 𝑁 : ( ω ↑o 𝑊 ) –1-1-onto→ 𝐴 ) | |
| 17 | 6 16 | syl | ⊢ ( 𝜑 → ◡ 𝑁 : ( ω ↑o 𝑊 ) –1-1-onto→ 𝐴 ) |
| 18 | f1oi | ⊢ ( I ↾ 𝑊 ) : 𝑊 –1-1-onto→ 𝑊 | |
| 19 | 18 | a1i | ⊢ ( 𝜑 → ( I ↾ 𝑊 ) : 𝑊 –1-1-onto→ 𝑊 ) |
| 20 | omelon | ⊢ ω ∈ On | |
| 21 | 20 | a1i | ⊢ ( 𝜑 → ω ∈ On ) |
| 22 | 2on | ⊢ 2o ∈ On | |
| 23 | oecl | ⊢ ( ( ω ∈ On ∧ 2o ∈ On ) → ( ω ↑o 2o ) ∈ On ) | |
| 24 | 21 22 23 | sylancl | ⊢ ( 𝜑 → ( ω ↑o 2o ) ∈ On ) |
| 25 | 22 | a1i | ⊢ ( 𝜑 → 2o ∈ On ) |
| 26 | peano1 | ⊢ ∅ ∈ ω | |
| 27 | 26 | a1i | ⊢ ( 𝜑 → ∅ ∈ ω ) |
| 28 | oen0 | ⊢ ( ( ( ω ∈ On ∧ 2o ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 2o ) ) | |
| 29 | 21 25 27 28 | syl21anc | ⊢ ( 𝜑 → ∅ ∈ ( ω ↑o 2o ) ) |
| 30 | ondif1 | ⊢ ( ( ω ↑o 2o ) ∈ ( On ∖ 1o ) ↔ ( ( ω ↑o 2o ) ∈ On ∧ ∅ ∈ ( ω ↑o 2o ) ) ) | |
| 31 | 24 29 30 | sylanbrc | ⊢ ( 𝜑 → ( ω ↑o 2o ) ∈ ( On ∖ 1o ) ) |
| 32 | 3 | eldifad | ⊢ ( 𝜑 → 𝑊 ∈ On ) |
| 33 | 4 19 31 32 21 32 5 7 8 | oef1o | ⊢ ( 𝜑 → 𝐻 : ( ( ω ↑o 2o ) ↑o 𝑊 ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 34 | f1oi | ⊢ ( I ↾ ω ) : ω –1-1-onto→ ω | |
| 35 | 34 | a1i | ⊢ ( 𝜑 → ( I ↾ ω ) : ω –1-1-onto→ ω ) |
| 36 | 10 11 | omf1o | ⊢ ( ( 𝑊 ∈ On ∧ 2o ∈ On ) → ( 𝑌 ∘ ◡ 𝑋 ) : ( 𝑊 ·o 2o ) –1-1-onto→ ( 2o ·o 𝑊 ) ) |
| 37 | 32 22 36 | sylancl | ⊢ ( 𝜑 → ( 𝑌 ∘ ◡ 𝑋 ) : ( 𝑊 ·o 2o ) –1-1-onto→ ( 2o ·o 𝑊 ) ) |
| 38 | ondif1 | ⊢ ( ω ∈ ( On ∖ 1o ) ↔ ( ω ∈ On ∧ ∅ ∈ ω ) ) | |
| 39 | 20 26 38 | mpbir2an | ⊢ ω ∈ ( On ∖ 1o ) |
| 40 | 39 | a1i | ⊢ ( 𝜑 → ω ∈ ( On ∖ 1o ) ) |
| 41 | omcl | ⊢ ( ( 𝑊 ∈ On ∧ 2o ∈ On ) → ( 𝑊 ·o 2o ) ∈ On ) | |
| 42 | 32 22 41 | sylancl | ⊢ ( 𝜑 → ( 𝑊 ·o 2o ) ∈ On ) |
| 43 | omcl | ⊢ ( ( 2o ∈ On ∧ 𝑊 ∈ On ) → ( 2o ·o 𝑊 ) ∈ On ) | |
| 44 | 25 32 43 | syl2anc | ⊢ ( 𝜑 → ( 2o ·o 𝑊 ) ∈ On ) |
| 45 | fvresi | ⊢ ( ∅ ∈ ω → ( ( I ↾ ω ) ‘ ∅ ) = ∅ ) | |
| 46 | 26 45 | mp1i | ⊢ ( 𝜑 → ( ( I ↾ ω ) ‘ ∅ ) = ∅ ) |
| 47 | 35 37 40 42 21 44 46 9 12 | oef1o | ⊢ ( 𝜑 → 𝐽 : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ω ↑o ( 2o ·o 𝑊 ) ) ) |
| 48 | oeoe | ⊢ ( ( ω ∈ On ∧ 2o ∈ On ∧ 𝑊 ∈ On ) → ( ( ω ↑o 2o ) ↑o 𝑊 ) = ( ω ↑o ( 2o ·o 𝑊 ) ) ) | |
| 49 | 20 25 32 48 | mp3an2i | ⊢ ( 𝜑 → ( ( ω ↑o 2o ) ↑o 𝑊 ) = ( ω ↑o ( 2o ·o 𝑊 ) ) ) |
| 50 | 49 | f1oeq3d | ⊢ ( 𝜑 → ( 𝐽 : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ( ω ↑o 2o ) ↑o 𝑊 ) ↔ 𝐽 : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ω ↑o ( 2o ·o 𝑊 ) ) ) ) |
| 51 | 47 50 | mpbird | ⊢ ( 𝜑 → 𝐽 : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ( ω ↑o 2o ) ↑o 𝑊 ) ) |
| 52 | f1oco | ⊢ ( ( 𝐻 : ( ( ω ↑o 2o ) ↑o 𝑊 ) –1-1-onto→ ( ω ↑o 𝑊 ) ∧ 𝐽 : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ( ω ↑o 2o ) ↑o 𝑊 ) ) → ( 𝐻 ∘ 𝐽 ) : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) | |
| 53 | 33 51 52 | syl2anc | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐽 ) : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 54 | df-2o | ⊢ 2o = suc 1o | |
| 55 | 54 | oveq2i | ⊢ ( 𝑊 ·o 2o ) = ( 𝑊 ·o suc 1o ) |
| 56 | 1on | ⊢ 1o ∈ On | |
| 57 | omsuc | ⊢ ( ( 𝑊 ∈ On ∧ 1o ∈ On ) → ( 𝑊 ·o suc 1o ) = ( ( 𝑊 ·o 1o ) +o 𝑊 ) ) | |
| 58 | 32 56 57 | sylancl | ⊢ ( 𝜑 → ( 𝑊 ·o suc 1o ) = ( ( 𝑊 ·o 1o ) +o 𝑊 ) ) |
| 59 | 55 58 | eqtrid | ⊢ ( 𝜑 → ( 𝑊 ·o 2o ) = ( ( 𝑊 ·o 1o ) +o 𝑊 ) ) |
| 60 | om1 | ⊢ ( 𝑊 ∈ On → ( 𝑊 ·o 1o ) = 𝑊 ) | |
| 61 | 32 60 | syl | ⊢ ( 𝜑 → ( 𝑊 ·o 1o ) = 𝑊 ) |
| 62 | 61 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑊 ·o 1o ) +o 𝑊 ) = ( 𝑊 +o 𝑊 ) ) |
| 63 | 59 62 | eqtrd | ⊢ ( 𝜑 → ( 𝑊 ·o 2o ) = ( 𝑊 +o 𝑊 ) ) |
| 64 | 63 | oveq2d | ⊢ ( 𝜑 → ( ω ↑o ( 𝑊 ·o 2o ) ) = ( ω ↑o ( 𝑊 +o 𝑊 ) ) ) |
| 65 | oeoa | ⊢ ( ( ω ∈ On ∧ 𝑊 ∈ On ∧ 𝑊 ∈ On ) → ( ω ↑o ( 𝑊 +o 𝑊 ) ) = ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) | |
| 66 | 20 32 32 65 | mp3an2i | ⊢ ( 𝜑 → ( ω ↑o ( 𝑊 +o 𝑊 ) ) = ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
| 67 | 64 66 | eqtrd | ⊢ ( 𝜑 → ( ω ↑o ( 𝑊 ·o 2o ) ) = ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
| 68 | 67 | f1oeq2d | ⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐽 ) : ( ω ↑o ( 𝑊 ·o 2o ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( 𝐻 ∘ 𝐽 ) : ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
| 69 | 53 68 | mpbid | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐽 ) : ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 70 | oecl | ⊢ ( ( ω ∈ On ∧ 𝑊 ∈ On ) → ( ω ↑o 𝑊 ) ∈ On ) | |
| 71 | 21 32 70 | syl2anc | ⊢ ( 𝜑 → ( ω ↑o 𝑊 ) ∈ On ) |
| 72 | 13 | omxpenlem | ⊢ ( ( ( ω ↑o 𝑊 ) ∈ On ∧ ( ω ↑o 𝑊 ) ∈ On ) → 𝑍 : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
| 73 | 71 71 72 | syl2anc | ⊢ ( 𝜑 → 𝑍 : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
| 74 | f1oco | ⊢ ( ( ( 𝐻 ∘ 𝐽 ) : ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ∧ 𝑍 : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) → ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) | |
| 75 | 69 73 74 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 76 | f1of | ⊢ ( 𝑁 : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) → 𝑁 : 𝐴 ⟶ ( ω ↑o 𝑊 ) ) | |
| 77 | 6 76 | syl | ⊢ ( 𝜑 → 𝑁 : 𝐴 ⟶ ( ω ↑o 𝑊 ) ) |
| 78 | 77 | feqmptd | ⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑥 ) ) ) |
| 79 | 78 | f1oeq1d | ⊢ ( 𝜑 → ( 𝑁 : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑥 ) ) : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
| 80 | 6 79 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑥 ) ) : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 81 | 77 | feqmptd | ⊢ ( 𝜑 → 𝑁 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑦 ) ) ) |
| 82 | 81 | f1oeq1d | ⊢ ( 𝜑 → ( 𝑁 : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( 𝑦 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑦 ) ) : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
| 83 | 6 82 | mpbid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( 𝑁 ‘ 𝑦 ) ) : 𝐴 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 84 | 80 83 | xpf1o | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝑁 ‘ 𝑥 ) , ( 𝑁 ‘ 𝑦 ) 〉 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ) |
| 85 | f1oeq1 | ⊢ ( 𝑇 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝑁 ‘ 𝑥 ) , ( 𝑁 ‘ 𝑦 ) 〉 ) → ( 𝑇 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ↔ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝑁 ‘ 𝑥 ) , ( 𝑁 ‘ 𝑦 ) 〉 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ) ) | |
| 86 | 14 85 | ax-mp | ⊢ ( 𝑇 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ↔ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝑁 ‘ 𝑥 ) , ( 𝑁 ‘ 𝑦 ) 〉 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ) |
| 87 | 84 86 | sylibr | ⊢ ( 𝜑 → 𝑇 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ) |
| 88 | f1oco | ⊢ ( ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) : ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ∧ 𝑇 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) × ( ω ↑o 𝑊 ) ) ) → ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ω ↑o 𝑊 ) ) | |
| 89 | 75 87 88 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 90 | f1oco | ⊢ ( ( ◡ 𝑁 : ( ω ↑o 𝑊 ) –1-1-onto→ 𝐴 ∧ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) : ( 𝐴 × 𝐴 ) –1-1-onto→ ( ω ↑o 𝑊 ) ) → ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) | |
| 91 | 17 89 90 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
| 92 | f1oeq1 | ⊢ ( 𝐺 = ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) → ( 𝐺 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ↔ ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) ) | |
| 93 | 15 92 | ax-mp | ⊢ ( 𝐺 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ↔ ( ◡ 𝑁 ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
| 94 | 91 93 | sylibr | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |