This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infxpenc2.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| infxpenc2.2 | ⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) | ||
| infxpenc2.3 | ⊢ 𝑊 = ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) | ||
| Assertion | infxpenc2lem1 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxpenc2.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 2 | infxpenc2.2 | ⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) | |
| 3 | infxpenc2.3 | ⊢ 𝑊 = ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) | |
| 4 | 2 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 5 | 4 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) |
| 6 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) | |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( ω ↑o 𝑥 ) = ( ω ↑o 𝑤 ) ) | |
| 8 | eqid | ⊢ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) = ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) | |
| 9 | ovex | ⊢ ( ω ↑o 𝑤 ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑤 ∈ ( On ∖ 1o ) → ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ 𝑤 ) = ( ω ↑o 𝑤 ) ) |
| 11 | 10 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ 𝑤 ) = ( ω ↑o 𝑤 ) ) |
| 12 | f1ofo | ⊢ ( ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) → ( 𝑛 ‘ 𝑏 ) : 𝑏 –onto→ ( ω ↑o 𝑤 ) ) | |
| 13 | 12 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑛 ‘ 𝑏 ) : 𝑏 –onto→ ( ω ↑o 𝑤 ) ) |
| 14 | forn | ⊢ ( ( 𝑛 ‘ 𝑏 ) : 𝑏 –onto→ ( ω ↑o 𝑤 ) → ran ( 𝑛 ‘ 𝑏 ) = ( ω ↑o 𝑤 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ran ( 𝑛 ‘ 𝑏 ) = ( ω ↑o 𝑤 ) ) |
| 16 | 11 15 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ 𝑤 ) = ran ( 𝑛 ‘ 𝑏 ) ) |
| 17 | ovex | ⊢ ( ω ↑o 𝑥 ) ∈ V | |
| 18 | 17 | 2a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑥 ∈ ( On ∖ 1o ) → ( ω ↑o 𝑥 ) ∈ V ) ) |
| 19 | omelon | ⊢ ω ∈ On | |
| 20 | 1onn | ⊢ 1o ∈ ω | |
| 21 | ondif2 | ⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) | |
| 22 | 19 20 21 | mpbir2an | ⊢ ω ∈ ( On ∖ 2o ) |
| 23 | eldifi | ⊢ ( 𝑥 ∈ ( On ∖ 1o ) → 𝑥 ∈ On ) | |
| 24 | 23 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ∧ ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝑦 ∈ ( On ∖ 1o ) ) ) → 𝑥 ∈ On ) |
| 25 | eldifi | ⊢ ( 𝑦 ∈ ( On ∖ 1o ) → 𝑦 ∈ On ) | |
| 26 | 25 | ad2antll | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ∧ ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝑦 ∈ ( On ∖ 1o ) ) ) → 𝑦 ∈ On ) |
| 27 | oecan | ⊢ ( ( ω ∈ ( On ∖ 2o ) ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( ω ↑o 𝑥 ) = ( ω ↑o 𝑦 ) ↔ 𝑥 = 𝑦 ) ) | |
| 28 | 22 24 26 27 | mp3an2i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ∧ ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝑦 ∈ ( On ∖ 1o ) ) ) → ( ( ω ↑o 𝑥 ) = ( ω ↑o 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 29 | 28 | ex | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝑦 ∈ ( On ∖ 1o ) ) → ( ( ω ↑o 𝑥 ) = ( ω ↑o 𝑦 ) ↔ 𝑥 = 𝑦 ) ) ) |
| 30 | 18 29 | dom2lem | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) : ( On ∖ 1o ) –1-1→ V ) |
| 31 | f1f1orn | ⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) : ( On ∖ 1o ) –1-1→ V → ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) : ( On ∖ 1o ) –1-1-onto→ ran ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) : ( On ∖ 1o ) –1-1-onto→ ran ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ) |
| 33 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → 𝑤 ∈ ( On ∖ 1o ) ) | |
| 34 | f1ocnvfv | ⊢ ( ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) : ( On ∖ 1o ) –1-1-onto→ ran ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ∧ 𝑤 ∈ ( On ∖ 1o ) ) → ( ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ 𝑤 ) = ran ( 𝑛 ‘ 𝑏 ) → ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) = 𝑤 ) ) | |
| 35 | 32 33 34 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ 𝑤 ) = ran ( 𝑛 ‘ 𝑏 ) → ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) = 𝑤 ) ) |
| 36 | 16 35 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) = 𝑤 ) |
| 37 | 3 36 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → 𝑊 = 𝑤 ) |
| 38 | 37 | eleq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑊 ∈ ( On ∖ 1o ) ↔ 𝑤 ∈ ( On ∖ 1o ) ) ) |
| 39 | 37 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ω ↑o 𝑊 ) = ( ω ↑o 𝑤 ) ) |
| 40 | 39 | f1oeq3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 41 | 38 40 | anbi12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ↔ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ) |
| 42 | 6 41 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) ∧ ( 𝑤 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) → ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
| 43 | 5 42 | rexlimddv | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |