This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct a bijection on a Cartesian product given bijections on the factors. (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpf1o.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 –1-1-onto→ 𝐵 ) | |
| xpf1o.2 | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐶 ↦ 𝑌 ) : 𝐶 –1-1-onto→ 𝐷 ) | ||
| Assertion | xpf1o | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 〈 𝑋 , 𝑌 〉 ) : ( 𝐴 × 𝐶 ) –1-1-onto→ ( 𝐵 × 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpf1o.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | xpf1o.2 | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐶 ↦ 𝑌 ) : 𝐶 –1-1-onto→ 𝐷 ) | |
| 3 | xp1st | ⊢ ( 𝑢 ∈ ( 𝐴 × 𝐶 ) → ( 1st ‘ 𝑢 ) ∈ 𝐴 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ( 1st ‘ 𝑢 ) ∈ 𝐴 ) |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) | |
| 6 | 5 | f1ompt | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 –1-1-onto→ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑧 = 𝑋 ) ) |
| 7 | 1 6 | sylib | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑧 = 𝑋 ) ) |
| 8 | 7 | simpld | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ) |
| 10 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 | |
| 11 | 10 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∈ 𝐵 |
| 12 | csbeq1a | ⊢ ( 𝑥 = ( 1st ‘ 𝑢 ) → 𝑋 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑥 = ( 1st ‘ 𝑢 ) → ( 𝑋 ∈ 𝐵 ↔ ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∈ 𝐵 ) ) |
| 14 | 11 13 | rspc | ⊢ ( ( 1st ‘ 𝑢 ) ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∈ 𝐵 ) ) |
| 15 | 4 9 14 | sylc | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∈ 𝐵 ) |
| 16 | xp2nd | ⊢ ( 𝑢 ∈ ( 𝐴 × 𝐶 ) → ( 2nd ‘ 𝑢 ) ∈ 𝐶 ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ( 2nd ‘ 𝑢 ) ∈ 𝐶 ) |
| 18 | eqid | ⊢ ( 𝑦 ∈ 𝐶 ↦ 𝑌 ) = ( 𝑦 ∈ 𝐶 ↦ 𝑌 ) | |
| 19 | 18 | f1ompt | ⊢ ( ( 𝑦 ∈ 𝐶 ↦ 𝑌 ) : 𝐶 –1-1-onto→ 𝐷 ↔ ( ∀ 𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ∧ ∀ 𝑤 ∈ 𝐷 ∃! 𝑦 ∈ 𝐶 𝑤 = 𝑌 ) ) |
| 20 | 2 19 | sylib | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ∧ ∀ 𝑤 ∈ 𝐷 ∃! 𝑦 ∈ 𝐶 𝑤 = 𝑌 ) ) |
| 21 | 20 | simpld | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ∀ 𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ) |
| 23 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 | |
| 24 | 23 | nfel1 | ⊢ Ⅎ 𝑦 ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ∈ 𝐷 |
| 25 | csbeq1a | ⊢ ( 𝑦 = ( 2nd ‘ 𝑢 ) → 𝑌 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑦 = ( 2nd ‘ 𝑢 ) → ( 𝑌 ∈ 𝐷 ↔ ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ∈ 𝐷 ) ) |
| 27 | 24 26 | rspc | ⊢ ( ( 2nd ‘ 𝑢 ) ∈ 𝐶 → ( ∀ 𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 → ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ∈ 𝐷 ) ) |
| 28 | 17 22 27 | sylc | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ∈ 𝐷 ) |
| 29 | 15 28 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ∈ ( 𝐵 × 𝐷 ) ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ∈ ( 𝐵 × 𝐷 ) ) |
| 31 | 7 | simprd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑧 = 𝑋 ) |
| 32 | 31 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ∃! 𝑥 ∈ 𝐴 𝑧 = 𝑋 ) |
| 33 | reu6 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝑧 = 𝑋 ↔ ∃ 𝑠 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ) | |
| 34 | 32 33 | sylib | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑠 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ) |
| 35 | 20 | simprd | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐷 ∃! 𝑦 ∈ 𝐶 𝑤 = 𝑌 ) |
| 36 | 35 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → ∃! 𝑦 ∈ 𝐶 𝑤 = 𝑌 ) |
| 37 | reu6 | ⊢ ( ∃! 𝑦 ∈ 𝐶 𝑤 = 𝑌 ↔ ∃ 𝑡 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) | |
| 38 | 36 37 | sylib | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → ∃ 𝑡 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) |
| 39 | 34 38 | anim12dan | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ) → ( ∃ 𝑠 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∃ 𝑡 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) ) |
| 40 | reeanv | ⊢ ( ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) ↔ ( ∃ 𝑠 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∃ 𝑡 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) ) | |
| 41 | pm4.38 | ⊢ ( ( ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) → ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) | |
| 42 | 41 | ex | ⊢ ( ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) → ( ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) → ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
| 43 | 42 | ralimdv | ⊢ ( ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) → ( ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) → ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
| 44 | 43 | com12 | ⊢ ( ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) → ( ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) → ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
| 45 | 44 | ralimdv | ⊢ ( ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
| 46 | 45 | impcom | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
| 47 | 46 | reximi | ⊢ ( ∃ 𝑡 ∈ 𝐶 ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) → ∃ 𝑡 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
| 48 | 47 | reximi | ⊢ ( ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) → ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
| 49 | 40 48 | sylbir | ⊢ ( ( ∃ 𝑠 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∃ 𝑡 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) → ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
| 50 | 39 49 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ) → ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
| 51 | vex | ⊢ 𝑠 ∈ V | |
| 52 | vex | ⊢ 𝑡 ∈ V | |
| 53 | 51 52 | op1std | ⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( 1st ‘ 𝑢 ) = 𝑠 ) |
| 54 | 53 | csbeq1d | ⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ) |
| 55 | 54 | eqeq2d | ⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ↔ 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ) ) |
| 56 | 51 52 | op2ndd | ⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( 2nd ‘ 𝑢 ) = 𝑡 ) |
| 57 | 56 | csbeq1d | ⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) |
| 58 | 57 | eqeq2d | ⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ↔ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ) |
| 59 | 55 58 | anbi12d | ⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ) ) |
| 60 | eqeq1 | ⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( 𝑢 = 𝑣 ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) | |
| 61 | 59 60 | bibi12d | ⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ↔ ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) ) |
| 62 | 61 | ralxp | ⊢ ( ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑠 ∈ 𝐴 ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) |
| 63 | nfv | ⊢ Ⅎ 𝑠 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) | |
| 64 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 65 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝑋 | |
| 66 | 65 | nfeq2 | ⊢ Ⅎ 𝑥 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 |
| 67 | nfv | ⊢ Ⅎ 𝑥 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 | |
| 68 | 66 67 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) |
| 69 | nfv | ⊢ Ⅎ 𝑥 〈 𝑠 , 𝑡 〉 = 𝑣 | |
| 70 | 68 69 | nfbi | ⊢ Ⅎ 𝑥 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) |
| 71 | 64 70 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) |
| 72 | nfv | ⊢ Ⅎ 𝑡 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) | |
| 73 | nfv | ⊢ Ⅎ 𝑦 𝑧 = 𝑋 | |
| 74 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑡 / 𝑦 ⦌ 𝑌 | |
| 75 | 74 | nfeq2 | ⊢ Ⅎ 𝑦 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 |
| 76 | 73 75 | nfan | ⊢ Ⅎ 𝑦 ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) |
| 77 | nfv | ⊢ Ⅎ 𝑦 〈 𝑥 , 𝑡 〉 = 𝑣 | |
| 78 | 76 77 | nfbi | ⊢ Ⅎ 𝑦 ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) |
| 79 | csbeq1a | ⊢ ( 𝑦 = 𝑡 → 𝑌 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) | |
| 80 | 79 | eqeq2d | ⊢ ( 𝑦 = 𝑡 → ( 𝑤 = 𝑌 ↔ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ) |
| 81 | 80 | anbi2d | ⊢ ( 𝑦 = 𝑡 → ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ) ) |
| 82 | opeq2 | ⊢ ( 𝑦 = 𝑡 → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑡 〉 ) | |
| 83 | 82 | eqeq1d | ⊢ ( 𝑦 = 𝑡 → ( 〈 𝑥 , 𝑦 〉 = 𝑣 ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) ) |
| 84 | 81 83 | bibi12d | ⊢ ( 𝑦 = 𝑡 → ( ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) ) ) |
| 85 | 72 78 84 | cbvralw | ⊢ ( ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) ) |
| 86 | csbeq1a | ⊢ ( 𝑥 = 𝑠 → 𝑋 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ) | |
| 87 | 86 | eqeq2d | ⊢ ( 𝑥 = 𝑠 → ( 𝑧 = 𝑋 ↔ 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ) ) |
| 88 | 87 | anbi1d | ⊢ ( 𝑥 = 𝑠 → ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ) ) |
| 89 | opeq1 | ⊢ ( 𝑥 = 𝑠 → 〈 𝑥 , 𝑡 〉 = 〈 𝑠 , 𝑡 〉 ) | |
| 90 | 89 | eqeq1d | ⊢ ( 𝑥 = 𝑠 → ( 〈 𝑥 , 𝑡 〉 = 𝑣 ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) |
| 91 | 88 90 | bibi12d | ⊢ ( 𝑥 = 𝑠 → ( ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) ↔ ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) ) |
| 92 | 91 | ralbidv | ⊢ ( 𝑥 = 𝑠 → ( ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) ↔ ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) ) |
| 93 | 85 92 | bitrid | ⊢ ( 𝑥 = 𝑠 → ( ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) ) |
| 94 | 63 71 93 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ∀ 𝑠 ∈ 𝐴 ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) |
| 95 | 62 94 | bitr4i | ⊢ ( ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ) |
| 96 | eqeq2 | ⊢ ( 𝑣 = 〈 𝑠 , 𝑡 〉 → ( 〈 𝑥 , 𝑦 〉 = 𝑣 ↔ 〈 𝑥 , 𝑦 〉 = 〈 𝑠 , 𝑡 〉 ) ) | |
| 97 | vex | ⊢ 𝑥 ∈ V | |
| 98 | vex | ⊢ 𝑦 ∈ V | |
| 99 | 97 98 | opth | ⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑠 , 𝑡 〉 ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) |
| 100 | 96 99 | bitrdi | ⊢ ( 𝑣 = 〈 𝑠 , 𝑡 〉 → ( 〈 𝑥 , 𝑦 〉 = 𝑣 ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
| 101 | 100 | bibi2d | ⊢ ( 𝑣 = 〈 𝑠 , 𝑡 〉 → ( ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
| 102 | 101 | 2ralbidv | ⊢ ( 𝑣 = 〈 𝑠 , 𝑡 〉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
| 103 | 95 102 | bitrid | ⊢ ( 𝑣 = 〈 𝑠 , 𝑡 〉 → ( ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
| 104 | 103 | rexxp | ⊢ ( ∃ 𝑣 ∈ ( 𝐴 × 𝐶 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ↔ ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
| 105 | 50 104 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ) → ∃ 𝑣 ∈ ( 𝐴 × 𝐶 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ) |
| 106 | reu6 | ⊢ ( ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ ∃ 𝑣 ∈ ( 𝐴 × 𝐶 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ) | |
| 107 | 105 106 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ) → ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) |
| 108 | 107 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐷 ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) |
| 109 | eqeq1 | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ↔ 〈 𝑧 , 𝑤 〉 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ) ) | |
| 110 | vex | ⊢ 𝑧 ∈ V | |
| 111 | vex | ⊢ 𝑤 ∈ V | |
| 112 | 110 111 | opth | ⊢ ( 〈 𝑧 , 𝑤 〉 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ↔ ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) |
| 113 | 109 112 | bitrdi | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ↔ ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) ) |
| 114 | 113 | reubidv | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ↔ ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) ) |
| 115 | 114 | ralxp | ⊢ ( ∀ 𝑣 ∈ ( 𝐵 × 𝐷 ) ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐷 ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) |
| 116 | 108 115 | sylibr | ⊢ ( 𝜑 → ∀ 𝑣 ∈ ( 𝐵 × 𝐷 ) ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ) |
| 117 | nfcv | ⊢ Ⅎ 𝑧 〈 𝑋 , 𝑌 〉 | |
| 118 | nfcv | ⊢ Ⅎ 𝑤 〈 𝑋 , 𝑌 〉 | |
| 119 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 | |
| 120 | nfcv | ⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑦 ⦌ 𝑌 | |
| 121 | 119 120 | nfop | ⊢ Ⅎ 𝑥 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 |
| 122 | nfcv | ⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 | |
| 123 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑤 / 𝑦 ⦌ 𝑌 | |
| 124 | 122 123 | nfop | ⊢ Ⅎ 𝑦 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 |
| 125 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝑋 = ⦋ 𝑧 / 𝑥 ⦌ 𝑋 ) | |
| 126 | csbeq1a | ⊢ ( 𝑦 = 𝑤 → 𝑌 = ⦋ 𝑤 / 𝑦 ⦌ 𝑌 ) | |
| 127 | opeq12 | ⊢ ( ( 𝑋 = ⦋ 𝑧 / 𝑥 ⦌ 𝑋 ∧ 𝑌 = ⦋ 𝑤 / 𝑦 ⦌ 𝑌 ) → 〈 𝑋 , 𝑌 〉 = 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 ) | |
| 128 | 125 126 127 | syl2an | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 〈 𝑋 , 𝑌 〉 = 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 ) |
| 129 | 117 118 121 124 128 | cbvmpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 〈 𝑋 , 𝑌 〉 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐶 ↦ 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 ) |
| 130 | 110 111 | op1std | ⊢ ( 𝑢 = 〈 𝑧 , 𝑤 〉 → ( 1st ‘ 𝑢 ) = 𝑧 ) |
| 131 | 130 | csbeq1d | ⊢ ( 𝑢 = 〈 𝑧 , 𝑤 〉 → ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 = ⦋ 𝑧 / 𝑥 ⦌ 𝑋 ) |
| 132 | 110 111 | op2ndd | ⊢ ( 𝑢 = 〈 𝑧 , 𝑤 〉 → ( 2nd ‘ 𝑢 ) = 𝑤 ) |
| 133 | 132 | csbeq1d | ⊢ ( 𝑢 = 〈 𝑧 , 𝑤 〉 → ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 = ⦋ 𝑤 / 𝑦 ⦌ 𝑌 ) |
| 134 | 131 133 | opeq12d | ⊢ ( 𝑢 = 〈 𝑧 , 𝑤 〉 → 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 = 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 ) |
| 135 | 134 | mpompt | ⊢ ( 𝑢 ∈ ( 𝐴 × 𝐶 ) ↦ 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐶 ↦ 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 ) |
| 136 | 129 135 | eqtr4i | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 〈 𝑋 , 𝑌 〉 ) = ( 𝑢 ∈ ( 𝐴 × 𝐶 ) ↦ 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ) |
| 137 | 136 | f1ompt | ⊢ ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 〈 𝑋 , 𝑌 〉 ) : ( 𝐴 × 𝐶 ) –1-1-onto→ ( 𝐵 × 𝐷 ) ↔ ( ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ∈ ( 𝐵 × 𝐷 ) ∧ ∀ 𝑣 ∈ ( 𝐵 × 𝐷 ) ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ) ) |
| 138 | 30 116 137 | sylanbrc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 〈 𝑋 , 𝑌 〉 ) : ( 𝐴 × 𝐶 ) –1-1-onto→ ( 𝐵 × 𝐷 ) ) |