This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct an explicit bijection from A .o B to B .o A . (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) | |
| omf1o.2 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) | ||
| Assertion | omf1o | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) | |
| 2 | omf1o.2 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) | |
| 3 | eqid | ⊢ ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) = ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) | |
| 4 | 3 | omxpenlem | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 6 | eqid | ⊢ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) = ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) | |
| 7 | 6 | xpcomf1o | ⊢ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 ) |
| 8 | f1oco | ⊢ ( ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ∧ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 ) ) → ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) | |
| 9 | 5 7 8 | sylancl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 10 | 6 3 | xpcomco | ⊢ ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) |
| 11 | 2 10 | eqtr4i | ⊢ 𝐺 = ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) |
| 12 | f1oeq1 | ⊢ ( 𝐺 = ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) → ( 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 14 | 9 13 | sylibr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 15 | 1 | omxpenlem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ) |
| 16 | f1ocnv | ⊢ ( 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) → ◡ 𝐹 : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ◡ 𝐹 : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) |
| 18 | f1oco | ⊢ ( ( 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ∧ ◡ 𝐹 : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) → ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) | |
| 19 | 14 17 18 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |