This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A canonical version of infxpen , by a completely different approach (although it uses infxpen via xpomen ). Using Cantor's normal form, we can show that A ^o B respects equinumerosity ( oef1o ), so that all the steps of (om ^ W ) x. ( om ^ W ) ~_om ^ ( 2 W ) ~ (om ^ 2 ) ^ W ~_om ^ W can be verified using bijections to do the ordinal commutations. (The assumption on N can be satisfied using cnfcom3c .) (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infxpenc.1 | |- ( ph -> A e. On ) |
|
| infxpenc.2 | |- ( ph -> _om C_ A ) |
||
| infxpenc.3 | |- ( ph -> W e. ( On \ 1o ) ) |
||
| infxpenc.4 | |- ( ph -> F : ( _om ^o 2o ) -1-1-onto-> _om ) |
||
| infxpenc.5 | |- ( ph -> ( F ` (/) ) = (/) ) |
||
| infxpenc.6 | |- ( ph -> N : A -1-1-onto-> ( _om ^o W ) ) |
||
| infxpenc.k | |- K = ( y e. { x e. ( ( _om ^o 2o ) ^m W ) | x finSupp (/) } |-> ( F o. ( y o. `' ( _I |` W ) ) ) ) |
||
| infxpenc.h | |- H = ( ( ( _om CNF W ) o. K ) o. `' ( ( _om ^o 2o ) CNF W ) ) |
||
| infxpenc.l | |- L = ( y e. { x e. ( _om ^m ( W .o 2o ) ) | x finSupp (/) } |-> ( ( _I |` _om ) o. ( y o. `' ( Y o. `' X ) ) ) ) |
||
| infxpenc.x | |- X = ( z e. 2o , w e. W |-> ( ( W .o z ) +o w ) ) |
||
| infxpenc.y | |- Y = ( z e. 2o , w e. W |-> ( ( 2o .o w ) +o z ) ) |
||
| infxpenc.j | |- J = ( ( ( _om CNF ( 2o .o W ) ) o. L ) o. `' ( _om CNF ( W .o 2o ) ) ) |
||
| infxpenc.z | |- Z = ( x e. ( _om ^o W ) , y e. ( _om ^o W ) |-> ( ( ( _om ^o W ) .o x ) +o y ) ) |
||
| infxpenc.t | |- T = ( x e. A , y e. A |-> <. ( N ` x ) , ( N ` y ) >. ) |
||
| infxpenc.g | |- G = ( `' N o. ( ( ( H o. J ) o. Z ) o. T ) ) |
||
| Assertion | infxpenc | |- ( ph -> G : ( A X. A ) -1-1-onto-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxpenc.1 | |- ( ph -> A e. On ) |
|
| 2 | infxpenc.2 | |- ( ph -> _om C_ A ) |
|
| 3 | infxpenc.3 | |- ( ph -> W e. ( On \ 1o ) ) |
|
| 4 | infxpenc.4 | |- ( ph -> F : ( _om ^o 2o ) -1-1-onto-> _om ) |
|
| 5 | infxpenc.5 | |- ( ph -> ( F ` (/) ) = (/) ) |
|
| 6 | infxpenc.6 | |- ( ph -> N : A -1-1-onto-> ( _om ^o W ) ) |
|
| 7 | infxpenc.k | |- K = ( y e. { x e. ( ( _om ^o 2o ) ^m W ) | x finSupp (/) } |-> ( F o. ( y o. `' ( _I |` W ) ) ) ) |
|
| 8 | infxpenc.h | |- H = ( ( ( _om CNF W ) o. K ) o. `' ( ( _om ^o 2o ) CNF W ) ) |
|
| 9 | infxpenc.l | |- L = ( y e. { x e. ( _om ^m ( W .o 2o ) ) | x finSupp (/) } |-> ( ( _I |` _om ) o. ( y o. `' ( Y o. `' X ) ) ) ) |
|
| 10 | infxpenc.x | |- X = ( z e. 2o , w e. W |-> ( ( W .o z ) +o w ) ) |
|
| 11 | infxpenc.y | |- Y = ( z e. 2o , w e. W |-> ( ( 2o .o w ) +o z ) ) |
|
| 12 | infxpenc.j | |- J = ( ( ( _om CNF ( 2o .o W ) ) o. L ) o. `' ( _om CNF ( W .o 2o ) ) ) |
|
| 13 | infxpenc.z | |- Z = ( x e. ( _om ^o W ) , y e. ( _om ^o W ) |-> ( ( ( _om ^o W ) .o x ) +o y ) ) |
|
| 14 | infxpenc.t | |- T = ( x e. A , y e. A |-> <. ( N ` x ) , ( N ` y ) >. ) |
|
| 15 | infxpenc.g | |- G = ( `' N o. ( ( ( H o. J ) o. Z ) o. T ) ) |
|
| 16 | f1ocnv | |- ( N : A -1-1-onto-> ( _om ^o W ) -> `' N : ( _om ^o W ) -1-1-onto-> A ) |
|
| 17 | 6 16 | syl | |- ( ph -> `' N : ( _om ^o W ) -1-1-onto-> A ) |
| 18 | f1oi | |- ( _I |` W ) : W -1-1-onto-> W |
|
| 19 | 18 | a1i | |- ( ph -> ( _I |` W ) : W -1-1-onto-> W ) |
| 20 | omelon | |- _om e. On |
|
| 21 | 20 | a1i | |- ( ph -> _om e. On ) |
| 22 | 2on | |- 2o e. On |
|
| 23 | oecl | |- ( ( _om e. On /\ 2o e. On ) -> ( _om ^o 2o ) e. On ) |
|
| 24 | 21 22 23 | sylancl | |- ( ph -> ( _om ^o 2o ) e. On ) |
| 25 | 22 | a1i | |- ( ph -> 2o e. On ) |
| 26 | peano1 | |- (/) e. _om |
|
| 27 | 26 | a1i | |- ( ph -> (/) e. _om ) |
| 28 | oen0 | |- ( ( ( _om e. On /\ 2o e. On ) /\ (/) e. _om ) -> (/) e. ( _om ^o 2o ) ) |
|
| 29 | 21 25 27 28 | syl21anc | |- ( ph -> (/) e. ( _om ^o 2o ) ) |
| 30 | ondif1 | |- ( ( _om ^o 2o ) e. ( On \ 1o ) <-> ( ( _om ^o 2o ) e. On /\ (/) e. ( _om ^o 2o ) ) ) |
|
| 31 | 24 29 30 | sylanbrc | |- ( ph -> ( _om ^o 2o ) e. ( On \ 1o ) ) |
| 32 | 3 | eldifad | |- ( ph -> W e. On ) |
| 33 | 4 19 31 32 21 32 5 7 8 | oef1o | |- ( ph -> H : ( ( _om ^o 2o ) ^o W ) -1-1-onto-> ( _om ^o W ) ) |
| 34 | f1oi | |- ( _I |` _om ) : _om -1-1-onto-> _om |
|
| 35 | 34 | a1i | |- ( ph -> ( _I |` _om ) : _om -1-1-onto-> _om ) |
| 36 | 10 11 | omf1o | |- ( ( W e. On /\ 2o e. On ) -> ( Y o. `' X ) : ( W .o 2o ) -1-1-onto-> ( 2o .o W ) ) |
| 37 | 32 22 36 | sylancl | |- ( ph -> ( Y o. `' X ) : ( W .o 2o ) -1-1-onto-> ( 2o .o W ) ) |
| 38 | ondif1 | |- ( _om e. ( On \ 1o ) <-> ( _om e. On /\ (/) e. _om ) ) |
|
| 39 | 20 26 38 | mpbir2an | |- _om e. ( On \ 1o ) |
| 40 | 39 | a1i | |- ( ph -> _om e. ( On \ 1o ) ) |
| 41 | omcl | |- ( ( W e. On /\ 2o e. On ) -> ( W .o 2o ) e. On ) |
|
| 42 | 32 22 41 | sylancl | |- ( ph -> ( W .o 2o ) e. On ) |
| 43 | omcl | |- ( ( 2o e. On /\ W e. On ) -> ( 2o .o W ) e. On ) |
|
| 44 | 25 32 43 | syl2anc | |- ( ph -> ( 2o .o W ) e. On ) |
| 45 | fvresi | |- ( (/) e. _om -> ( ( _I |` _om ) ` (/) ) = (/) ) |
|
| 46 | 26 45 | mp1i | |- ( ph -> ( ( _I |` _om ) ` (/) ) = (/) ) |
| 47 | 35 37 40 42 21 44 46 9 12 | oef1o | |- ( ph -> J : ( _om ^o ( W .o 2o ) ) -1-1-onto-> ( _om ^o ( 2o .o W ) ) ) |
| 48 | oeoe | |- ( ( _om e. On /\ 2o e. On /\ W e. On ) -> ( ( _om ^o 2o ) ^o W ) = ( _om ^o ( 2o .o W ) ) ) |
|
| 49 | 20 25 32 48 | mp3an2i | |- ( ph -> ( ( _om ^o 2o ) ^o W ) = ( _om ^o ( 2o .o W ) ) ) |
| 50 | 49 | f1oeq3d | |- ( ph -> ( J : ( _om ^o ( W .o 2o ) ) -1-1-onto-> ( ( _om ^o 2o ) ^o W ) <-> J : ( _om ^o ( W .o 2o ) ) -1-1-onto-> ( _om ^o ( 2o .o W ) ) ) ) |
| 51 | 47 50 | mpbird | |- ( ph -> J : ( _om ^o ( W .o 2o ) ) -1-1-onto-> ( ( _om ^o 2o ) ^o W ) ) |
| 52 | f1oco | |- ( ( H : ( ( _om ^o 2o ) ^o W ) -1-1-onto-> ( _om ^o W ) /\ J : ( _om ^o ( W .o 2o ) ) -1-1-onto-> ( ( _om ^o 2o ) ^o W ) ) -> ( H o. J ) : ( _om ^o ( W .o 2o ) ) -1-1-onto-> ( _om ^o W ) ) |
|
| 53 | 33 51 52 | syl2anc | |- ( ph -> ( H o. J ) : ( _om ^o ( W .o 2o ) ) -1-1-onto-> ( _om ^o W ) ) |
| 54 | df-2o | |- 2o = suc 1o |
|
| 55 | 54 | oveq2i | |- ( W .o 2o ) = ( W .o suc 1o ) |
| 56 | 1on | |- 1o e. On |
|
| 57 | omsuc | |- ( ( W e. On /\ 1o e. On ) -> ( W .o suc 1o ) = ( ( W .o 1o ) +o W ) ) |
|
| 58 | 32 56 57 | sylancl | |- ( ph -> ( W .o suc 1o ) = ( ( W .o 1o ) +o W ) ) |
| 59 | 55 58 | eqtrid | |- ( ph -> ( W .o 2o ) = ( ( W .o 1o ) +o W ) ) |
| 60 | om1 | |- ( W e. On -> ( W .o 1o ) = W ) |
|
| 61 | 32 60 | syl | |- ( ph -> ( W .o 1o ) = W ) |
| 62 | 61 | oveq1d | |- ( ph -> ( ( W .o 1o ) +o W ) = ( W +o W ) ) |
| 63 | 59 62 | eqtrd | |- ( ph -> ( W .o 2o ) = ( W +o W ) ) |
| 64 | 63 | oveq2d | |- ( ph -> ( _om ^o ( W .o 2o ) ) = ( _om ^o ( W +o W ) ) ) |
| 65 | oeoa | |- ( ( _om e. On /\ W e. On /\ W e. On ) -> ( _om ^o ( W +o W ) ) = ( ( _om ^o W ) .o ( _om ^o W ) ) ) |
|
| 66 | 20 32 32 65 | mp3an2i | |- ( ph -> ( _om ^o ( W +o W ) ) = ( ( _om ^o W ) .o ( _om ^o W ) ) ) |
| 67 | 64 66 | eqtrd | |- ( ph -> ( _om ^o ( W .o 2o ) ) = ( ( _om ^o W ) .o ( _om ^o W ) ) ) |
| 68 | 67 | f1oeq2d | |- ( ph -> ( ( H o. J ) : ( _om ^o ( W .o 2o ) ) -1-1-onto-> ( _om ^o W ) <-> ( H o. J ) : ( ( _om ^o W ) .o ( _om ^o W ) ) -1-1-onto-> ( _om ^o W ) ) ) |
| 69 | 53 68 | mpbid | |- ( ph -> ( H o. J ) : ( ( _om ^o W ) .o ( _om ^o W ) ) -1-1-onto-> ( _om ^o W ) ) |
| 70 | oecl | |- ( ( _om e. On /\ W e. On ) -> ( _om ^o W ) e. On ) |
|
| 71 | 21 32 70 | syl2anc | |- ( ph -> ( _om ^o W ) e. On ) |
| 72 | 13 | omxpenlem | |- ( ( ( _om ^o W ) e. On /\ ( _om ^o W ) e. On ) -> Z : ( ( _om ^o W ) X. ( _om ^o W ) ) -1-1-onto-> ( ( _om ^o W ) .o ( _om ^o W ) ) ) |
| 73 | 71 71 72 | syl2anc | |- ( ph -> Z : ( ( _om ^o W ) X. ( _om ^o W ) ) -1-1-onto-> ( ( _om ^o W ) .o ( _om ^o W ) ) ) |
| 74 | f1oco | |- ( ( ( H o. J ) : ( ( _om ^o W ) .o ( _om ^o W ) ) -1-1-onto-> ( _om ^o W ) /\ Z : ( ( _om ^o W ) X. ( _om ^o W ) ) -1-1-onto-> ( ( _om ^o W ) .o ( _om ^o W ) ) ) -> ( ( H o. J ) o. Z ) : ( ( _om ^o W ) X. ( _om ^o W ) ) -1-1-onto-> ( _om ^o W ) ) |
|
| 75 | 69 73 74 | syl2anc | |- ( ph -> ( ( H o. J ) o. Z ) : ( ( _om ^o W ) X. ( _om ^o W ) ) -1-1-onto-> ( _om ^o W ) ) |
| 76 | f1of | |- ( N : A -1-1-onto-> ( _om ^o W ) -> N : A --> ( _om ^o W ) ) |
|
| 77 | 6 76 | syl | |- ( ph -> N : A --> ( _om ^o W ) ) |
| 78 | 77 | feqmptd | |- ( ph -> N = ( x e. A |-> ( N ` x ) ) ) |
| 79 | 78 | f1oeq1d | |- ( ph -> ( N : A -1-1-onto-> ( _om ^o W ) <-> ( x e. A |-> ( N ` x ) ) : A -1-1-onto-> ( _om ^o W ) ) ) |
| 80 | 6 79 | mpbid | |- ( ph -> ( x e. A |-> ( N ` x ) ) : A -1-1-onto-> ( _om ^o W ) ) |
| 81 | 77 | feqmptd | |- ( ph -> N = ( y e. A |-> ( N ` y ) ) ) |
| 82 | 81 | f1oeq1d | |- ( ph -> ( N : A -1-1-onto-> ( _om ^o W ) <-> ( y e. A |-> ( N ` y ) ) : A -1-1-onto-> ( _om ^o W ) ) ) |
| 83 | 6 82 | mpbid | |- ( ph -> ( y e. A |-> ( N ` y ) ) : A -1-1-onto-> ( _om ^o W ) ) |
| 84 | 80 83 | xpf1o | |- ( ph -> ( x e. A , y e. A |-> <. ( N ` x ) , ( N ` y ) >. ) : ( A X. A ) -1-1-onto-> ( ( _om ^o W ) X. ( _om ^o W ) ) ) |
| 85 | f1oeq1 | |- ( T = ( x e. A , y e. A |-> <. ( N ` x ) , ( N ` y ) >. ) -> ( T : ( A X. A ) -1-1-onto-> ( ( _om ^o W ) X. ( _om ^o W ) ) <-> ( x e. A , y e. A |-> <. ( N ` x ) , ( N ` y ) >. ) : ( A X. A ) -1-1-onto-> ( ( _om ^o W ) X. ( _om ^o W ) ) ) ) |
|
| 86 | 14 85 | ax-mp | |- ( T : ( A X. A ) -1-1-onto-> ( ( _om ^o W ) X. ( _om ^o W ) ) <-> ( x e. A , y e. A |-> <. ( N ` x ) , ( N ` y ) >. ) : ( A X. A ) -1-1-onto-> ( ( _om ^o W ) X. ( _om ^o W ) ) ) |
| 87 | 84 86 | sylibr | |- ( ph -> T : ( A X. A ) -1-1-onto-> ( ( _om ^o W ) X. ( _om ^o W ) ) ) |
| 88 | f1oco | |- ( ( ( ( H o. J ) o. Z ) : ( ( _om ^o W ) X. ( _om ^o W ) ) -1-1-onto-> ( _om ^o W ) /\ T : ( A X. A ) -1-1-onto-> ( ( _om ^o W ) X. ( _om ^o W ) ) ) -> ( ( ( H o. J ) o. Z ) o. T ) : ( A X. A ) -1-1-onto-> ( _om ^o W ) ) |
|
| 89 | 75 87 88 | syl2anc | |- ( ph -> ( ( ( H o. J ) o. Z ) o. T ) : ( A X. A ) -1-1-onto-> ( _om ^o W ) ) |
| 90 | f1oco | |- ( ( `' N : ( _om ^o W ) -1-1-onto-> A /\ ( ( ( H o. J ) o. Z ) o. T ) : ( A X. A ) -1-1-onto-> ( _om ^o W ) ) -> ( `' N o. ( ( ( H o. J ) o. Z ) o. T ) ) : ( A X. A ) -1-1-onto-> A ) |
|
| 91 | 17 89 90 | syl2anc | |- ( ph -> ( `' N o. ( ( ( H o. J ) o. Z ) o. T ) ) : ( A X. A ) -1-1-onto-> A ) |
| 92 | f1oeq1 | |- ( G = ( `' N o. ( ( ( H o. J ) o. Z ) o. T ) ) -> ( G : ( A X. A ) -1-1-onto-> A <-> ( `' N o. ( ( ( H o. J ) o. Z ) o. T ) ) : ( A X. A ) -1-1-onto-> A ) ) |
|
| 93 | 15 92 | ax-mp | |- ( G : ( A X. A ) -1-1-onto-> A <-> ( `' N o. ( ( ( H o. J ) o. Z ) o. T ) ) : ( A X. A ) -1-1-onto-> A ) |
| 94 | 91 93 | sylibr | |- ( ph -> G : ( A X. A ) -1-1-onto-> A ) |