This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of exponents law for ordinal exponentiation. Theorem 8R of Enderton p. 238. Also Proposition 8.41 of TakeutiZaring p. 69. Theorem 4.7 of Schloeder p. 14. (Contributed by Eric Schmidt, 26-May-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oeoa | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa00 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 +o 𝐶 ) = ∅ ↔ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) | |
| 2 | 1 | biimpar | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( 𝐵 +o 𝐶 ) = ∅ ) |
| 3 | 2 | oveq2d | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ∅ ↑o ∅ ) ) |
| 4 | oveq2 | ⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) = ( ∅ ↑o ∅ ) ) | |
| 5 | oveq2 | ⊢ ( 𝐶 = ∅ → ( ∅ ↑o 𝐶 ) = ( ∅ ↑o ∅ ) ) | |
| 6 | oe0m0 | ⊢ ( ∅ ↑o ∅ ) = 1o | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝐶 = ∅ → ( ∅ ↑o 𝐶 ) = 1o ) |
| 8 | 4 7 | oveqan12d | ⊢ ( ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ( ∅ ↑o ∅ ) ·o 1o ) ) |
| 9 | 0elon | ⊢ ∅ ∈ On | |
| 10 | oecl | ⊢ ( ( ∅ ∈ On ∧ ∅ ∈ On ) → ( ∅ ↑o ∅ ) ∈ On ) | |
| 11 | 9 9 10 | mp2an | ⊢ ( ∅ ↑o ∅ ) ∈ On |
| 12 | om1 | ⊢ ( ( ∅ ↑o ∅ ) ∈ On → ( ( ∅ ↑o ∅ ) ·o 1o ) = ( ∅ ↑o ∅ ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ( ∅ ↑o ∅ ) ·o 1o ) = ( ∅ ↑o ∅ ) |
| 14 | 8 13 | eqtrdi | ⊢ ( ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ∅ ↑o ∅ ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ∅ ↑o ∅ ) ) |
| 16 | 3 15 | eqtr4d | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
| 17 | oacl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +o 𝐶 ) ∈ On ) | |
| 18 | on0eln0 | ⊢ ( ( 𝐵 +o 𝐶 ) ∈ On → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( 𝐵 +o 𝐶 ) ≠ ∅ ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( 𝐵 +o 𝐶 ) ≠ ∅ ) ) |
| 20 | oe0m1 | ⊢ ( ( 𝐵 +o 𝐶 ) ∈ On → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ) ) | |
| 21 | 17 20 | syl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ) ) |
| 22 | 1 | necon3abid | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 +o 𝐶 ) ≠ ∅ ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) |
| 23 | 19 21 22 | 3bitr3d | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) |
| 24 | 23 | biimpar | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ) |
| 25 | on0eln0 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
| 27 | on0eln0 | ⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) | |
| 28 | 27 | adantl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
| 29 | 26 28 | orbi12d | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) ↔ ( 𝐵 ≠ ∅ ∨ 𝐶 ≠ ∅ ) ) ) |
| 30 | neorian | ⊢ ( ( 𝐵 ≠ ∅ ∨ 𝐶 ≠ ∅ ) ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) | |
| 31 | 29 30 | bitrdi | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) |
| 32 | oe0m1 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) | |
| 33 | 32 | biimpa | ⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
| 34 | 33 | oveq1d | ⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ∅ ·o ( ∅ ↑o 𝐶 ) ) ) |
| 35 | oecl | ⊢ ( ( ∅ ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ↑o 𝐶 ) ∈ On ) | |
| 36 | 9 35 | mpan | ⊢ ( 𝐶 ∈ On → ( ∅ ↑o 𝐶 ) ∈ On ) |
| 37 | om0r | ⊢ ( ( ∅ ↑o 𝐶 ) ∈ On → ( ∅ ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) | |
| 38 | 36 37 | syl | ⊢ ( 𝐶 ∈ On → ( ∅ ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 39 | 34 38 | sylan9eq | ⊢ ( ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ∧ 𝐶 ∈ On ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 40 | 39 | an32s | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 41 | oe0m1 | ⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( ∅ ↑o 𝐶 ) = ∅ ) ) | |
| 42 | 41 | biimpa | ⊢ ( ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) → ( ∅ ↑o 𝐶 ) = ∅ ) |
| 43 | 42 | oveq2d | ⊢ ( ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ∅ ) ) |
| 44 | oecl | ⊢ ( ( ∅ ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ↑o 𝐵 ) ∈ On ) | |
| 45 | 9 44 | mpan | ⊢ ( 𝐵 ∈ On → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 46 | om0 | ⊢ ( ( ∅ ↑o 𝐵 ) ∈ On → ( ( ∅ ↑o 𝐵 ) ·o ∅ ) = ∅ ) | |
| 47 | 45 46 | syl | ⊢ ( 𝐵 ∈ On → ( ( ∅ ↑o 𝐵 ) ·o ∅ ) = ∅ ) |
| 48 | 43 47 | sylan9eqr | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 49 | 48 | anassrs | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 50 | 40 49 | jaodan | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 51 | 50 | ex | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) ) |
| 52 | 31 51 | sylbird | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) ) |
| 53 | 52 | imp | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 54 | 24 53 | eqtr4d | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
| 55 | 16 54 | pm2.61dan | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
| 56 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) ) | |
| 57 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) | |
| 58 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐶 ) = ( ∅ ↑o 𝐶 ) ) | |
| 59 | 57 58 | oveq12d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
| 60 | 56 59 | eqeq12d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ↔ ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) ) |
| 61 | 55 60 | imbitrrid | ⊢ ( 𝐴 = ∅ → ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) ) |
| 62 | 61 | impcom | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
| 63 | oveq1 | ⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) ) | |
| 64 | oveq1 | ⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ↑o 𝐵 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ) | |
| 65 | oveq1 | ⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ↑o 𝐶 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) | |
| 66 | 64 65 | oveq12d | ⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) |
| 67 | 63 66 | eqeq12d | ⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) |
| 68 | 67 | imbi2d | ⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐶 ∈ On → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) ↔ ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) ) |
| 69 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( 𝐵 +o 𝐶 ) = ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) | |
| 70 | 69 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) ) |
| 71 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ) | |
| 72 | 71 | oveq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) |
| 73 | 70 72 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) |
| 74 | 73 | imbi2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ↔ ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) ) |
| 75 | eleq1 | ⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ∈ On ↔ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ) ) | |
| 76 | eleq2 | ⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ∅ ∈ 𝐴 ↔ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) | |
| 77 | 75 76 | anbi12d | ⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) ) |
| 78 | eleq1 | ⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 1o ∈ On ↔ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ) ) | |
| 79 | eleq2 | ⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ∅ ∈ 1o ↔ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) | |
| 80 | 78 79 | anbi12d | ⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 1o ∈ On ∧ ∅ ∈ 1o ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) ) |
| 81 | 1on | ⊢ 1o ∈ On | |
| 82 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 83 | 81 82 | pm3.2i | ⊢ ( 1o ∈ On ∧ ∅ ∈ 1o ) |
| 84 | 77 80 83 | elimhyp | ⊢ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) |
| 85 | 84 | simpli | ⊢ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On |
| 86 | 84 | simpri | ⊢ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) |
| 87 | 81 | elimel | ⊢ if ( 𝐵 ∈ On , 𝐵 , 1o ) ∈ On |
| 88 | 85 86 87 | oeoalem | ⊢ ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) |
| 89 | 68 74 88 | dedth2h | ⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ On → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) ) |
| 90 | 89 | impr | ⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
| 91 | 90 | an32s | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
| 92 | 62 91 | oe0lem | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
| 93 | 92 | 3impb | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |