This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fmulc.2 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| i1fmulc.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| Assertion | i1fmulclem | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝐵 } ) = ( ◡ 𝐹 “ { ( 𝐵 / 𝐴 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fmulc.2 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | i1fmulc.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | reex | ⊢ ℝ ∈ V | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 5 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 7 | 6 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 8 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 9 | 4 2 7 8 | ofc1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 10 | 9 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 11 | 10 | eqeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = 𝐵 ↔ ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) = 𝐵 ) ) |
| 12 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ↔ ( 𝐵 / 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 13 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 14 | 13 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 15 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 16 | 15 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 17 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 18 | 17 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 19 | 18 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 20 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → 𝐴 ≠ 0 ) | |
| 21 | 14 16 19 20 | divmuld | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐵 / 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) = 𝐵 ) ) |
| 22 | 12 21 | bitrid | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ↔ ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) = 𝐵 ) ) |
| 23 | 11 22 | bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = 𝐵 ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ) ) |
| 24 | 23 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝑧 ∈ ℝ ∧ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ) ) ) |
| 25 | remulcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 27 | fconstg | ⊢ ( 𝐴 ∈ ℝ → ( ℝ × { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) | |
| 28 | 2 27 | syl | ⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) |
| 29 | 2 | snssd | ⊢ ( 𝜑 → { 𝐴 } ⊆ ℝ ) |
| 30 | 28 29 | fssd | ⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ ℝ ) |
| 31 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 32 | 26 30 6 4 4 31 | off | ⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ℝ ) |
| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ℝ ) |
| 34 | 33 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) Fn ℝ ) |
| 35 | fniniseg | ⊢ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) Fn ℝ → ( 𝑧 ∈ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝐵 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = 𝐵 ) ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝐵 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = 𝐵 ) ) ) |
| 37 | 17 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝐹 Fn ℝ ) |
| 38 | fniniseg | ⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐵 / 𝐴 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐵 / 𝐴 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ) ) ) |
| 40 | 24 36 39 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝐵 } ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐵 / 𝐴 ) } ) ) ) |
| 41 | 40 | eqrdv | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝐵 } ) = ( ◡ 𝐹 “ { ( 𝐵 / 𝐴 ) } ) ) |