This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1f0 | ⊢ ( ℝ × { 0 } ) ∈ dom ∫1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | 1 | fconst6 | ⊢ ( ℝ × { 0 } ) : ℝ ⟶ ℝ |
| 3 | 2 | a1i | ⊢ ( ⊤ → ( ℝ × { 0 } ) : ℝ ⟶ ℝ ) |
| 4 | snfi | ⊢ { 0 } ∈ Fin | |
| 5 | rnxpss | ⊢ ran ( ℝ × { 0 } ) ⊆ { 0 } | |
| 6 | ssfi | ⊢ ( ( { 0 } ∈ Fin ∧ ran ( ℝ × { 0 } ) ⊆ { 0 } ) → ran ( ℝ × { 0 } ) ∈ Fin ) | |
| 7 | 4 5 6 | mp2an | ⊢ ran ( ℝ × { 0 } ) ∈ Fin |
| 8 | 7 | a1i | ⊢ ( ⊤ → ran ( ℝ × { 0 } ) ∈ Fin ) |
| 9 | difss | ⊢ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ⊆ ran ( ℝ × { 0 } ) | |
| 10 | 9 5 | sstri | ⊢ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ⊆ { 0 } |
| 11 | 10 | sseli | ⊢ ( 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) → 𝑥 ∈ { 0 } ) |
| 12 | 11 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → 𝑥 ∈ { 0 } ) |
| 13 | eldifn | ⊢ ( 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) → ¬ 𝑥 ∈ { 0 } ) | |
| 14 | 13 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ¬ 𝑥 ∈ { 0 } ) |
| 15 | 12 14 | pm2.21dd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ∈ dom vol ) |
| 16 | 12 14 | pm2.21dd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ∈ ℝ ) |
| 17 | 3 8 15 16 | i1fd | ⊢ ( ⊤ → ( ℝ × { 0 } ) ∈ dom ∫1 ) |
| 18 | 17 | mptru | ⊢ ( ℝ × { 0 } ) ∈ dom ∫1 |