This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A compact metric space is complete. One half of heibor . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | relcmpcmet.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| relcmpcmet.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| cmpcmet.3 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| Assertion | cmpcmet | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcmpcmet.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | relcmpcmet.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | cmpcmet.3 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 4 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 6 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ Comp ) |
| 7 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 10 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 11 | 9 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 13 | rpxr | ⊢ ( 1 ∈ ℝ+ → 1 ∈ ℝ* ) | |
| 14 | 4 13 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℝ* ) |
| 15 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) | |
| 16 | 9 12 14 15 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) |
| 17 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 18 | 9 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 19 | 16 18 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ∪ 𝐽 ) |
| 20 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 21 | 20 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 22 | 11 19 21 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 23 | cmpcld | ⊢ ( ( 𝐽 ∈ Comp ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ) | |
| 24 | 6 22 23 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ) |
| 25 | 1 2 5 24 | relcmpcmet | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |