This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hartogs . (Contributed by Mario Carneiro, 14-Jan-2013) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hartogslem.2 | ⊢ 𝐹 = { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } | |
| hartogslem.3 | ⊢ 𝑅 = { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑓 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑓 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } | ||
| Assertion | hartogslem1 | ⊢ ( dom 𝐹 ⊆ 𝒫 ( 𝐴 × 𝐴 ) ∧ Fun 𝐹 ∧ ( 𝐴 ∈ 𝑉 → ran 𝐹 = { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hartogslem.2 | ⊢ 𝐹 = { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } | |
| 2 | hartogslem.3 | ⊢ 𝑅 = { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑓 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑓 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } | |
| 3 | 1 | dmeqi | ⊢ dom 𝐹 = dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } |
| 4 | dmopab | ⊢ dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = { 𝑟 ∣ ∃ 𝑦 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } | |
| 5 | 3 4 | eqtri | ⊢ dom 𝐹 = { 𝑟 ∣ ∃ 𝑦 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } |
| 6 | simp3 | ⊢ ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) → 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) | |
| 7 | simp1 | ⊢ ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) → dom 𝑟 ⊆ 𝐴 ) | |
| 8 | xpss12 | ⊢ ( ( dom 𝑟 ⊆ 𝐴 ∧ dom 𝑟 ⊆ 𝐴 ) → ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝐴 × 𝐴 ) ) | |
| 9 | 7 7 8 | syl2anc | ⊢ ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) → ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝐴 × 𝐴 ) ) |
| 10 | 6 9 | sstrd | ⊢ ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) → 𝑟 ⊆ ( 𝐴 × 𝐴 ) ) |
| 11 | velpw | ⊢ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ↔ 𝑟 ⊆ ( 𝐴 × 𝐴 ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) → 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
| 13 | 12 | ad2antrr | ⊢ ( ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) → 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
| 14 | 13 | exlimiv | ⊢ ( ∃ 𝑦 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) → 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
| 15 | 14 | abssi | ⊢ { 𝑟 ∣ ∃ 𝑦 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ⊆ 𝒫 ( 𝐴 × 𝐴 ) |
| 16 | 5 15 | eqsstri | ⊢ dom 𝐹 ⊆ 𝒫 ( 𝐴 × 𝐴 ) |
| 17 | funopab4 | ⊢ Fun { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } | |
| 18 | 1 | funeqi | ⊢ ( Fun 𝐹 ↔ Fun { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ) |
| 19 | 17 18 | mpbir | ⊢ Fun 𝐹 |
| 20 | 1 | rneqi | ⊢ ran 𝐹 = ran { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } |
| 21 | rnopab | ⊢ ran { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = { 𝑦 ∣ ∃ 𝑟 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } | |
| 22 | 20 21 | eqtri | ⊢ ran 𝐹 = { 𝑦 ∣ ∃ 𝑟 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } |
| 23 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≼ 𝐴 ↔ 𝑦 ≼ 𝐴 ) ) | |
| 24 | 23 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
| 25 | f1f | ⊢ ( 𝑓 : 𝑦 –1-1→ 𝐴 → 𝑓 : 𝑦 ⟶ 𝐴 ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → 𝑓 : 𝑦 ⟶ 𝐴 ) |
| 27 | 26 | frnd | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ran 𝑓 ⊆ 𝐴 ) |
| 28 | resss | ⊢ ( I ↾ ran 𝑓 ) ⊆ I | |
| 29 | ssun2 | ⊢ I ⊆ ( 𝑅 ∪ I ) | |
| 30 | 28 29 | sstri | ⊢ ( I ↾ ran 𝑓 ) ⊆ ( 𝑅 ∪ I ) |
| 31 | idssxp | ⊢ ( I ↾ ran 𝑓 ) ⊆ ( ran 𝑓 × ran 𝑓 ) | |
| 32 | 30 31 | ssini | ⊢ ( I ↾ ran 𝑓 ) ⊆ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) |
| 33 | 32 | a1i | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( I ↾ ran 𝑓 ) ⊆ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ) |
| 34 | inss2 | ⊢ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ⊆ ( ran 𝑓 × ran 𝑓 ) | |
| 35 | 34 | a1i | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ⊆ ( ran 𝑓 × ran 𝑓 ) ) |
| 36 | 27 33 35 | 3jca | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓 ) ⊆ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ∧ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ⊆ ( ran 𝑓 × ran 𝑓 ) ) ) |
| 37 | eloni | ⊢ ( 𝑦 ∈ On → Ord 𝑦 ) | |
| 38 | ordwe | ⊢ ( Ord 𝑦 → E We 𝑦 ) | |
| 39 | 37 38 | syl | ⊢ ( 𝑦 ∈ On → E We 𝑦 ) |
| 40 | 39 | adantr | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → E We 𝑦 ) |
| 41 | f1f1orn | ⊢ ( 𝑓 : 𝑦 –1-1→ 𝐴 → 𝑓 : 𝑦 –1-1-onto→ ran 𝑓 ) | |
| 42 | 41 | adantl | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → 𝑓 : 𝑦 –1-1-onto→ ran 𝑓 ) |
| 43 | f1oiso | ⊢ ( ( 𝑓 : 𝑦 –1-1-onto→ ran 𝑓 ∧ 𝑅 = { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑓 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑓 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } ) → 𝑓 Isom E , 𝑅 ( 𝑦 , ran 𝑓 ) ) | |
| 44 | 42 2 43 | sylancl | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → 𝑓 Isom E , 𝑅 ( 𝑦 , ran 𝑓 ) ) |
| 45 | isores2 | ⊢ ( 𝑓 Isom E , 𝑅 ( 𝑦 , ran 𝑓 ) ↔ 𝑓 Isom E , ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ( 𝑦 , ran 𝑓 ) ) | |
| 46 | 44 45 | sylib | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → 𝑓 Isom E , ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ( 𝑦 , ran 𝑓 ) ) |
| 47 | isowe | ⊢ ( 𝑓 Isom E , ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ( 𝑦 , ran 𝑓 ) → ( E We 𝑦 ↔ ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) We ran 𝑓 ) ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( E We 𝑦 ↔ ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) We ran 𝑓 ) ) |
| 49 | 40 48 | mpbid | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) We ran 𝑓 ) |
| 50 | weso | ⊢ ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) We ran 𝑓 → ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) Or ran 𝑓 ) | |
| 51 | 49 50 | syl | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) Or ran 𝑓 ) |
| 52 | inss2 | ⊢ ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ⊆ ( ran 𝑓 × ran 𝑓 ) | |
| 53 | 52 | brel | ⊢ ( 𝑥 ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) 𝑥 → ( 𝑥 ∈ ran 𝑓 ∧ 𝑥 ∈ ran 𝑓 ) ) |
| 54 | 53 | simpld | ⊢ ( 𝑥 ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) 𝑥 → 𝑥 ∈ ran 𝑓 ) |
| 55 | sonr | ⊢ ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) Or ran 𝑓 ∧ 𝑥 ∈ ran 𝑓 ) → ¬ 𝑥 ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) 𝑥 ) | |
| 56 | 51 54 55 | syl2an | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) ∧ 𝑥 ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) 𝑥 ) → ¬ 𝑥 ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) 𝑥 ) |
| 57 | 56 | pm2.01da | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ¬ 𝑥 ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) 𝑥 ) |
| 58 | 57 | alrimiv | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ∀ 𝑥 ¬ 𝑥 ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) 𝑥 ) |
| 59 | intirr | ⊢ ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∩ I ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) 𝑥 ) | |
| 60 | 58 59 | sylibr | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∩ I ) = ∅ ) |
| 61 | disj3 | ⊢ ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∩ I ) = ∅ ↔ ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) = ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) ) | |
| 62 | 60 61 | sylib | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) = ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) ) |
| 63 | weeq1 | ⊢ ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) = ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) → ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) We ran 𝑓 ↔ ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) We ran 𝑓 ) ) | |
| 64 | 62 63 | syl | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) We ran 𝑓 ↔ ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) We ran 𝑓 ) ) |
| 65 | 49 64 | mpbid | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) We ran 𝑓 ) |
| 66 | 37 | adantr | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → Ord 𝑦 ) |
| 67 | isoeq3 | ⊢ ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) = ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) → ( 𝑓 Isom E , ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ( 𝑦 , ran 𝑓 ) ↔ 𝑓 Isom E , ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) ( 𝑦 , ran 𝑓 ) ) ) | |
| 68 | 62 67 | syl | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( 𝑓 Isom E , ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ( 𝑦 , ran 𝑓 ) ↔ 𝑓 Isom E , ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) ( 𝑦 , ran 𝑓 ) ) ) |
| 69 | 46 68 | mpbid | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → 𝑓 Isom E , ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) ( 𝑦 , ran 𝑓 ) ) |
| 70 | vex | ⊢ 𝑓 ∈ V | |
| 71 | 70 | rnex | ⊢ ran 𝑓 ∈ V |
| 72 | exse | ⊢ ( ran 𝑓 ∈ V → ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) Se ran 𝑓 ) | |
| 73 | 71 72 | ax-mp | ⊢ ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) Se ran 𝑓 |
| 74 | eqid | ⊢ OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) = OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) | |
| 75 | 74 | oieu | ⊢ ( ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) We ran 𝑓 ∧ ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) Se ran 𝑓 ) → ( ( Ord 𝑦 ∧ 𝑓 Isom E , ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) ( 𝑦 , ran 𝑓 ) ) ↔ ( 𝑦 = dom OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ∧ 𝑓 = OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ) ) ) |
| 76 | 65 73 75 | sylancl | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( ( Ord 𝑦 ∧ 𝑓 Isom E , ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) ( 𝑦 , ran 𝑓 ) ) ↔ ( 𝑦 = dom OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ∧ 𝑓 = OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ) ) ) |
| 77 | 66 69 76 | mpbi2and | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ( 𝑦 = dom OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ∧ 𝑓 = OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ) ) |
| 78 | 77 | simpld | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → 𝑦 = dom OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ) |
| 79 | 71 71 | xpex | ⊢ ( ran 𝑓 × ran 𝑓 ) ∈ V |
| 80 | 79 | inex2 | ⊢ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ∈ V |
| 81 | sseq1 | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( 𝑟 ⊆ ( ran 𝑓 × ran 𝑓 ) ↔ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ⊆ ( ran 𝑓 × ran 𝑓 ) ) ) | |
| 82 | 34 81 | mpbiri | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → 𝑟 ⊆ ( ran 𝑓 × ran 𝑓 ) ) |
| 83 | dmss | ⊢ ( 𝑟 ⊆ ( ran 𝑓 × ran 𝑓 ) → dom 𝑟 ⊆ dom ( ran 𝑓 × ran 𝑓 ) ) | |
| 84 | 82 83 | syl | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → dom 𝑟 ⊆ dom ( ran 𝑓 × ran 𝑓 ) ) |
| 85 | dmxpid | ⊢ dom ( ran 𝑓 × ran 𝑓 ) = ran 𝑓 | |
| 86 | 84 85 | sseqtrdi | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → dom 𝑟 ⊆ ran 𝑓 ) |
| 87 | dmresi | ⊢ dom ( I ↾ ran 𝑓 ) = ran 𝑓 | |
| 88 | sseq2 | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( ( I ↾ ran 𝑓 ) ⊆ 𝑟 ↔ ( I ↾ ran 𝑓 ) ⊆ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ) ) | |
| 89 | 32 88 | mpbiri | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( I ↾ ran 𝑓 ) ⊆ 𝑟 ) |
| 90 | dmss | ⊢ ( ( I ↾ ran 𝑓 ) ⊆ 𝑟 → dom ( I ↾ ran 𝑓 ) ⊆ dom 𝑟 ) | |
| 91 | 89 90 | syl | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → dom ( I ↾ ran 𝑓 ) ⊆ dom 𝑟 ) |
| 92 | 87 91 | eqsstrrid | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ran 𝑓 ⊆ dom 𝑟 ) |
| 93 | 86 92 | eqssd | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → dom 𝑟 = ran 𝑓 ) |
| 94 | 93 | sseq1d | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( dom 𝑟 ⊆ 𝐴 ↔ ran 𝑓 ⊆ 𝐴 ) ) |
| 95 | 93 | reseq2d | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( I ↾ dom 𝑟 ) = ( I ↾ ran 𝑓 ) ) |
| 96 | id | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ) | |
| 97 | 95 96 | sseq12d | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ↔ ( I ↾ ran 𝑓 ) ⊆ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ) ) |
| 98 | 93 | sqxpeqd | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( dom 𝑟 × dom 𝑟 ) = ( ran 𝑓 × ran 𝑓 ) ) |
| 99 | 96 98 | sseq12d | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ↔ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ⊆ ( ran 𝑓 × ran 𝑓 ) ) ) |
| 100 | 94 97 99 | 3anbi123d | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ↔ ( ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓 ) ⊆ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ∧ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ⊆ ( ran 𝑓 × ran 𝑓 ) ) ) ) |
| 101 | difeq1 | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( 𝑟 ∖ I ) = ( ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) ) | |
| 102 | difun2 | ⊢ ( ( 𝑅 ∪ I ) ∖ I ) = ( 𝑅 ∖ I ) | |
| 103 | 102 | ineq1i | ⊢ ( ( ( 𝑅 ∪ I ) ∖ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) = ( ( 𝑅 ∖ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) |
| 104 | indif1 | ⊢ ( ( ( 𝑅 ∪ I ) ∖ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) = ( ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) | |
| 105 | indif1 | ⊢ ( ( 𝑅 ∖ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) = ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) | |
| 106 | 103 104 105 | 3eqtr3i | ⊢ ( ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) = ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) |
| 107 | 101 106 | eqtrdi | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( 𝑟 ∖ I ) = ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) ) |
| 108 | 107 93 | weeq12d | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( ( 𝑟 ∖ I ) We dom 𝑟 ↔ ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) We ran 𝑓 ) ) |
| 109 | 100 108 | anbi12d | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ↔ ( ( ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓 ) ⊆ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ∧ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ⊆ ( ran 𝑓 × ran 𝑓 ) ) ∧ ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) We ran 𝑓 ) ) ) |
| 110 | oieq1 | ⊢ ( ( 𝑟 ∖ I ) = ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) → OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) = OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , dom 𝑟 ) ) | |
| 111 | 107 110 | syl | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) = OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , dom 𝑟 ) ) |
| 112 | oieq2 | ⊢ ( dom 𝑟 = ran 𝑓 → OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , dom 𝑟 ) = OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ) | |
| 113 | 93 112 | syl | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , dom 𝑟 ) = OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ) |
| 114 | 111 113 | eqtrd | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) = OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ) |
| 115 | 114 | dmeqd | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) = dom OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ) |
| 116 | 115 | eqeq2d | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ↔ 𝑦 = dom OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ) ) |
| 117 | 109 116 | anbi12d | ⊢ ( 𝑟 = ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) → ( ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ↔ ( ( ( ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓 ) ⊆ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ∧ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ⊆ ( ran 𝑓 × ran 𝑓 ) ) ∧ ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) We ran 𝑓 ) ∧ 𝑦 = dom OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ) ) ) |
| 118 | 80 117 | spcev | ⊢ ( ( ( ( ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓 ) ⊆ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ∧ ( ( 𝑅 ∪ I ) ∩ ( ran 𝑓 × ran 𝑓 ) ) ⊆ ( ran 𝑓 × ran 𝑓 ) ) ∧ ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) We ran 𝑓 ) ∧ 𝑦 = dom OrdIso ( ( ( 𝑅 ∩ ( ran 𝑓 × ran 𝑓 ) ) ∖ I ) , ran 𝑓 ) ) → ∃ 𝑟 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ) |
| 119 | 36 65 78 118 | syl21anc | ⊢ ( ( 𝑦 ∈ On ∧ 𝑓 : 𝑦 –1-1→ 𝐴 ) → ∃ 𝑟 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ) |
| 120 | 119 | ex | ⊢ ( 𝑦 ∈ On → ( 𝑓 : 𝑦 –1-1→ 𝐴 → ∃ 𝑟 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ) ) |
| 121 | 120 | exlimdv | ⊢ ( 𝑦 ∈ On → ( ∃ 𝑓 𝑓 : 𝑦 –1-1→ 𝐴 → ∃ 𝑟 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ) ) |
| 122 | brdomi | ⊢ ( 𝑦 ≼ 𝐴 → ∃ 𝑓 𝑓 : 𝑦 –1-1→ 𝐴 ) | |
| 123 | 121 122 | impel | ⊢ ( ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) → ∃ 𝑟 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ) |
| 124 | simpr | ⊢ ( ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) → 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) | |
| 125 | vex | ⊢ 𝑟 ∈ V | |
| 126 | 125 | dmex | ⊢ dom 𝑟 ∈ V |
| 127 | eqid | ⊢ OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) = OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) | |
| 128 | 127 | oion | ⊢ ( dom 𝑟 ∈ V → dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ∈ On ) |
| 129 | 126 128 | ax-mp | ⊢ dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ∈ On |
| 130 | 124 129 | eqeltrdi | ⊢ ( ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) → 𝑦 ∈ On ) |
| 131 | 130 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ) → 𝑦 ∈ On ) |
| 132 | simplr | ⊢ ( ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) → ( 𝑟 ∖ I ) We dom 𝑟 ) | |
| 133 | 127 | oien | ⊢ ( ( dom 𝑟 ∈ V ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) → dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ≈ dom 𝑟 ) |
| 134 | 126 132 133 | sylancr | ⊢ ( ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) → dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ≈ dom 𝑟 ) |
| 135 | 124 134 | eqbrtrd | ⊢ ( ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) → 𝑦 ≈ dom 𝑟 ) |
| 136 | ssdomg | ⊢ ( 𝐴 ∈ 𝑉 → ( dom 𝑟 ⊆ 𝐴 → dom 𝑟 ≼ 𝐴 ) ) | |
| 137 | simpll1 | ⊢ ( ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) → dom 𝑟 ⊆ 𝐴 ) | |
| 138 | 136 137 | impel | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ) → dom 𝑟 ≼ 𝐴 ) |
| 139 | endomtr | ⊢ ( ( 𝑦 ≈ dom 𝑟 ∧ dom 𝑟 ≼ 𝐴 ) → 𝑦 ≼ 𝐴 ) | |
| 140 | 135 138 139 | syl2an2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ) → 𝑦 ≼ 𝐴 ) |
| 141 | 131 140 | jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
| 142 | 141 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) |
| 143 | 142 | exlimdv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑟 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) |
| 144 | 123 143 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ↔ ∃ 𝑟 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ) ) |
| 145 | 24 144 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ∃ 𝑟 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) ) ) |
| 146 | 145 | eqabdv | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } = { 𝑦 ∣ ∃ 𝑟 ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ) |
| 147 | 22 146 | eqtr4id | ⊢ ( 𝐴 ∈ 𝑉 → ran 𝐹 = { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
| 148 | 16 19 147 | 3pm3.2i | ⊢ ( dom 𝐹 ⊆ 𝒫 ( 𝐴 × 𝐴 ) ∧ Fun 𝐹 ∧ ( 𝐴 ∈ 𝑉 → ran 𝐹 = { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |