This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oieq1 | ⊢ ( 𝑅 = 𝑆 → OrdIso ( 𝑅 , 𝐴 ) = OrdIso ( 𝑆 , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | weeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 We 𝐴 ↔ 𝑆 We 𝐴 ) ) | |
| 2 | seeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝑅 = 𝑆 → ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ↔ ( 𝑆 We 𝐴 ∧ 𝑆 Se 𝐴 ) ) ) |
| 4 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑗 𝑅 𝑤 ↔ 𝑗 𝑆 𝑤 ) ) | |
| 5 | 4 | ralbidv | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 ↔ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 ) ) |
| 6 | 5 | rabbidv | ⊢ ( 𝑅 = 𝑆 → { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ) |
| 7 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑢 𝑅 𝑣 ↔ 𝑢 𝑆 𝑣 ) ) | |
| 8 | 7 | notbid | ⊢ ( 𝑅 = 𝑆 → ( ¬ 𝑢 𝑅 𝑣 ↔ ¬ 𝑢 𝑆 𝑣 ) ) |
| 9 | 6 8 | raleqbidv | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ↔ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) |
| 10 | 6 9 | riotaeqbidv | ⊢ ( 𝑅 = 𝑆 → ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) = ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) |
| 11 | 10 | mpteq2dv | ⊢ ( 𝑅 = 𝑆 → ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) |
| 12 | recseq | ⊢ ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) → recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) = recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑅 = 𝑆 → recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) = recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ) |
| 14 | 13 | imaeq1d | ⊢ ( 𝑅 = 𝑆 → ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) = ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) ) |
| 15 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑧 𝑅 𝑡 ↔ 𝑧 𝑆 𝑡 ) ) | |
| 16 | 14 15 | raleqbidv | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 ) ) |
| 17 | 16 | rexbidv | ⊢ ( 𝑅 = 𝑆 → ( ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 ) ) |
| 18 | 17 | rabbidv | ⊢ ( 𝑅 = 𝑆 → { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } ) |
| 19 | 13 18 | reseq12d | ⊢ ( 𝑅 = 𝑆 → ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) = ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } ) ) |
| 20 | 3 19 | ifbieq1d | ⊢ ( 𝑅 = 𝑆 → if ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) , ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ ) = if ( ( 𝑆 We 𝐴 ∧ 𝑆 Se 𝐴 ) , ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } ) , ∅ ) ) |
| 21 | df-oi | ⊢ OrdIso ( 𝑅 , 𝐴 ) = if ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) , ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ ) | |
| 22 | df-oi | ⊢ OrdIso ( 𝑆 , 𝐴 ) = if ( ( 𝑆 We 𝐴 ∧ 𝑆 Se 𝐴 ) , ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } ) , ∅ ) | |
| 23 | 20 21 22 | 3eqtr4g | ⊢ ( 𝑅 = 𝑆 → OrdIso ( 𝑅 , 𝐴 ) = OrdIso ( 𝑆 , 𝐴 ) ) |