This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of ordinals dominated by a given set is an ordinal. A shorter (when taking into account lemmas hartogslem1 and hartogslem2 ) proof can be given using the axiom of choice, see ondomon . As its label indicates, this result is used to justify the definition of the Hartogs function df-har . (Contributed by Jeff Hankins, 22-Oct-2009) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hartogs | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ∈ On ) | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | onelss | ⊢ ( 𝑧 ∈ On → ( 𝑦 ∈ 𝑧 → 𝑦 ⊆ 𝑧 ) ) | |
| 4 | 3 | imp | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ⊆ 𝑧 ) |
| 5 | ssdomg | ⊢ ( 𝑧 ∈ V → ( 𝑦 ⊆ 𝑧 → 𝑦 ≼ 𝑧 ) ) | |
| 6 | 2 4 5 | mpsyl | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ≼ 𝑧 ) |
| 7 | 1 6 | jca | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝑧 ) ) |
| 8 | domtr | ⊢ ( ( 𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴 ) → 𝑦 ≼ 𝐴 ) | |
| 9 | 8 | anim2i | ⊢ ( ( 𝑦 ∈ On ∧ ( 𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴 ) ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
| 10 | 9 | anassrs | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝑧 ) ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
| 11 | 7 10 | sylan | ⊢ ( ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
| 12 | 11 | exp31 | ⊢ ( 𝑧 ∈ On → ( 𝑦 ∈ 𝑧 → ( 𝑧 ≼ 𝐴 → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) ) |
| 13 | 12 | com12 | ⊢ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ On → ( 𝑧 ≼ 𝐴 → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) ) |
| 14 | 13 | impd | ⊢ ( 𝑦 ∈ 𝑧 → ( ( 𝑧 ∈ On ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) |
| 15 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≼ 𝐴 ↔ 𝑧 ≼ 𝐴 ) ) | |
| 16 | 15 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ( 𝑧 ∈ On ∧ 𝑧 ≼ 𝐴 ) ) |
| 17 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≼ 𝐴 ↔ 𝑦 ≼ 𝐴 ) ) | |
| 18 | 17 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
| 19 | 14 16 18 | 3imtr4g | ⊢ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
| 21 | 20 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
| 22 | dftr2 | ⊢ ( Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) | |
| 23 | 21 22 | mpbir | ⊢ Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } |
| 24 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ On | |
| 25 | ordon | ⊢ Ord On | |
| 26 | trssord | ⊢ ( ( Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∧ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ On ∧ Ord On ) → Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) | |
| 27 | 23 24 25 26 | mp3an | ⊢ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } |
| 28 | eqid | ⊢ { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } | |
| 29 | eqid | ⊢ { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑔 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑔 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } = { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑔 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑔 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } | |
| 30 | 28 29 | hartogslem2 | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ V ) |
| 31 | elong | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ V → ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ↔ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) | |
| 32 | 30 31 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ↔ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
| 33 | 27 32 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ) |