This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hartogs . (Contributed by Mario Carneiro, 14-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hartogslem.2 | ⊢ 𝐹 = { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } | |
| hartogslem.3 | ⊢ 𝑅 = { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑓 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑓 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } | ||
| Assertion | hartogslem2 | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hartogslem.2 | ⊢ 𝐹 = { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } | |
| 2 | hartogslem.3 | ⊢ 𝑅 = { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑓 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑓 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } | |
| 3 | 1 2 | hartogslem1 | ⊢ ( dom 𝐹 ⊆ 𝒫 ( 𝐴 × 𝐴 ) ∧ Fun 𝐹 ∧ ( 𝐴 ∈ 𝑉 → ran 𝐹 = { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
| 4 | 3 | simp3i | ⊢ ( 𝐴 ∈ 𝑉 → ran 𝐹 = { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
| 5 | 3 | simp2i | ⊢ Fun 𝐹 |
| 6 | 3 | simp1i | ⊢ dom 𝐹 ⊆ 𝒫 ( 𝐴 × 𝐴 ) |
| 7 | sqxpexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × 𝐴 ) ∈ V ) | |
| 8 | 7 | pwexd | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 ( 𝐴 × 𝐴 ) ∈ V ) |
| 9 | ssexg | ⊢ ( ( dom 𝐹 ⊆ 𝒫 ( 𝐴 × 𝐴 ) ∧ 𝒫 ( 𝐴 × 𝐴 ) ∈ V ) → dom 𝐹 ∈ V ) | |
| 10 | 6 8 9 | sylancr | ⊢ ( 𝐴 ∈ 𝑉 → dom 𝐹 ∈ V ) |
| 11 | funex | ⊢ ( ( Fun 𝐹 ∧ dom 𝐹 ∈ V ) → 𝐹 ∈ V ) | |
| 12 | 5 10 11 | sylancr | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 ∈ V ) |
| 13 | rnexg | ⊢ ( 𝐹 ∈ V → ran 𝐹 ∈ V ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ran 𝐹 ∈ V ) |
| 15 | 4 14 | eqeltrrd | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ V ) |