This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hartogs . (Contributed by Mario Carneiro, 14-Jan-2013) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hartogslem.2 | |- F = { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
|
| hartogslem.3 | |- R = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) } |
||
| Assertion | hartogslem1 | |- ( dom F C_ ~P ( A X. A ) /\ Fun F /\ ( A e. V -> ran F = { x e. On | x ~<_ A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hartogslem.2 | |- F = { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
|
| 2 | hartogslem.3 | |- R = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) } |
|
| 3 | 1 | dmeqi | |- dom F = dom { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
| 4 | dmopab | |- dom { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { r | E. y ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
|
| 5 | 3 4 | eqtri | |- dom F = { r | E. y ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
| 6 | simp3 | |- ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) -> r C_ ( dom r X. dom r ) ) |
|
| 7 | simp1 | |- ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) -> dom r C_ A ) |
|
| 8 | xpss12 | |- ( ( dom r C_ A /\ dom r C_ A ) -> ( dom r X. dom r ) C_ ( A X. A ) ) |
|
| 9 | 7 7 8 | syl2anc | |- ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) -> ( dom r X. dom r ) C_ ( A X. A ) ) |
| 10 | 6 9 | sstrd | |- ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) -> r C_ ( A X. A ) ) |
| 11 | velpw | |- ( r e. ~P ( A X. A ) <-> r C_ ( A X. A ) ) |
|
| 12 | 10 11 | sylibr | |- ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) -> r e. ~P ( A X. A ) ) |
| 13 | 12 | ad2antrr | |- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> r e. ~P ( A X. A ) ) |
| 14 | 13 | exlimiv | |- ( E. y ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> r e. ~P ( A X. A ) ) |
| 15 | 14 | abssi | |- { r | E. y ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } C_ ~P ( A X. A ) |
| 16 | 5 15 | eqsstri | |- dom F C_ ~P ( A X. A ) |
| 17 | funopab4 | |- Fun { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
|
| 18 | 1 | funeqi | |- ( Fun F <-> Fun { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
| 19 | 17 18 | mpbir | |- Fun F |
| 20 | 1 | rneqi | |- ran F = ran { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
| 21 | rnopab | |- ran { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { y | E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
|
| 22 | 20 21 | eqtri | |- ran F = { y | E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
| 23 | breq1 | |- ( x = y -> ( x ~<_ A <-> y ~<_ A ) ) |
|
| 24 | 23 | elrab | |- ( y e. { x e. On | x ~<_ A } <-> ( y e. On /\ y ~<_ A ) ) |
| 25 | f1f | |- ( f : y -1-1-> A -> f : y --> A ) |
|
| 26 | 25 | adantl | |- ( ( y e. On /\ f : y -1-1-> A ) -> f : y --> A ) |
| 27 | 26 | frnd | |- ( ( y e. On /\ f : y -1-1-> A ) -> ran f C_ A ) |
| 28 | resss | |- ( _I |` ran f ) C_ _I |
|
| 29 | ssun2 | |- _I C_ ( R u. _I ) |
|
| 30 | 28 29 | sstri | |- ( _I |` ran f ) C_ ( R u. _I ) |
| 31 | idssxp | |- ( _I |` ran f ) C_ ( ran f X. ran f ) |
|
| 32 | 30 31 | ssini | |- ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) |
| 33 | 32 | a1i | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) ) |
| 34 | inss2 | |- ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) |
|
| 35 | 34 | a1i | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) |
| 36 | 27 33 35 | 3jca | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( ran f C_ A /\ ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) /\ ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) ) |
| 37 | eloni | |- ( y e. On -> Ord y ) |
|
| 38 | ordwe | |- ( Ord y -> _E We y ) |
|
| 39 | 37 38 | syl | |- ( y e. On -> _E We y ) |
| 40 | 39 | adantr | |- ( ( y e. On /\ f : y -1-1-> A ) -> _E We y ) |
| 41 | f1f1orn | |- ( f : y -1-1-> A -> f : y -1-1-onto-> ran f ) |
|
| 42 | 41 | adantl | |- ( ( y e. On /\ f : y -1-1-> A ) -> f : y -1-1-onto-> ran f ) |
| 43 | f1oiso | |- ( ( f : y -1-1-onto-> ran f /\ R = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) } ) -> f Isom _E , R ( y , ran f ) ) |
|
| 44 | 42 2 43 | sylancl | |- ( ( y e. On /\ f : y -1-1-> A ) -> f Isom _E , R ( y , ran f ) ) |
| 45 | isores2 | |- ( f Isom _E , R ( y , ran f ) <-> f Isom _E , ( R i^i ( ran f X. ran f ) ) ( y , ran f ) ) |
|
| 46 | 44 45 | sylib | |- ( ( y e. On /\ f : y -1-1-> A ) -> f Isom _E , ( R i^i ( ran f X. ran f ) ) ( y , ran f ) ) |
| 47 | isowe | |- ( f Isom _E , ( R i^i ( ran f X. ran f ) ) ( y , ran f ) -> ( _E We y <-> ( R i^i ( ran f X. ran f ) ) We ran f ) ) |
|
| 48 | 46 47 | syl | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( _E We y <-> ( R i^i ( ran f X. ran f ) ) We ran f ) ) |
| 49 | 40 48 | mpbid | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( R i^i ( ran f X. ran f ) ) We ran f ) |
| 50 | weso | |- ( ( R i^i ( ran f X. ran f ) ) We ran f -> ( R i^i ( ran f X. ran f ) ) Or ran f ) |
|
| 51 | 49 50 | syl | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( R i^i ( ran f X. ran f ) ) Or ran f ) |
| 52 | inss2 | |- ( R i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) |
|
| 53 | 52 | brel | |- ( x ( R i^i ( ran f X. ran f ) ) x -> ( x e. ran f /\ x e. ran f ) ) |
| 54 | 53 | simpld | |- ( x ( R i^i ( ran f X. ran f ) ) x -> x e. ran f ) |
| 55 | sonr | |- ( ( ( R i^i ( ran f X. ran f ) ) Or ran f /\ x e. ran f ) -> -. x ( R i^i ( ran f X. ran f ) ) x ) |
|
| 56 | 51 54 55 | syl2an | |- ( ( ( y e. On /\ f : y -1-1-> A ) /\ x ( R i^i ( ran f X. ran f ) ) x ) -> -. x ( R i^i ( ran f X. ran f ) ) x ) |
| 57 | 56 | pm2.01da | |- ( ( y e. On /\ f : y -1-1-> A ) -> -. x ( R i^i ( ran f X. ran f ) ) x ) |
| 58 | 57 | alrimiv | |- ( ( y e. On /\ f : y -1-1-> A ) -> A. x -. x ( R i^i ( ran f X. ran f ) ) x ) |
| 59 | intirr | |- ( ( ( R i^i ( ran f X. ran f ) ) i^i _I ) = (/) <-> A. x -. x ( R i^i ( ran f X. ran f ) ) x ) |
|
| 60 | 58 59 | sylibr | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( ( R i^i ( ran f X. ran f ) ) i^i _I ) = (/) ) |
| 61 | disj3 | |- ( ( ( R i^i ( ran f X. ran f ) ) i^i _I ) = (/) <-> ( R i^i ( ran f X. ran f ) ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) ) |
|
| 62 | 60 61 | sylib | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( R i^i ( ran f X. ran f ) ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) ) |
| 63 | weeq1 | |- ( ( R i^i ( ran f X. ran f ) ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) -> ( ( R i^i ( ran f X. ran f ) ) We ran f <-> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) ) |
|
| 64 | 62 63 | syl | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( ( R i^i ( ran f X. ran f ) ) We ran f <-> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) ) |
| 65 | 49 64 | mpbid | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) |
| 66 | 37 | adantr | |- ( ( y e. On /\ f : y -1-1-> A ) -> Ord y ) |
| 67 | isoeq3 | |- ( ( R i^i ( ran f X. ran f ) ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) -> ( f Isom _E , ( R i^i ( ran f X. ran f ) ) ( y , ran f ) <-> f Isom _E , ( ( R i^i ( ran f X. ran f ) ) \ _I ) ( y , ran f ) ) ) |
|
| 68 | 62 67 | syl | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( f Isom _E , ( R i^i ( ran f X. ran f ) ) ( y , ran f ) <-> f Isom _E , ( ( R i^i ( ran f X. ran f ) ) \ _I ) ( y , ran f ) ) ) |
| 69 | 46 68 | mpbid | |- ( ( y e. On /\ f : y -1-1-> A ) -> f Isom _E , ( ( R i^i ( ran f X. ran f ) ) \ _I ) ( y , ran f ) ) |
| 70 | vex | |- f e. _V |
|
| 71 | 70 | rnex | |- ran f e. _V |
| 72 | exse | |- ( ran f e. _V -> ( ( R i^i ( ran f X. ran f ) ) \ _I ) Se ran f ) |
|
| 73 | 71 72 | ax-mp | |- ( ( R i^i ( ran f X. ran f ) ) \ _I ) Se ran f |
| 74 | eqid | |- OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) |
|
| 75 | 74 | oieu | |- ( ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f /\ ( ( R i^i ( ran f X. ran f ) ) \ _I ) Se ran f ) -> ( ( Ord y /\ f Isom _E , ( ( R i^i ( ran f X. ran f ) ) \ _I ) ( y , ran f ) ) <-> ( y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) /\ f = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) ) ) |
| 76 | 65 73 75 | sylancl | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( ( Ord y /\ f Isom _E , ( ( R i^i ( ran f X. ran f ) ) \ _I ) ( y , ran f ) ) <-> ( y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) /\ f = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) ) ) |
| 77 | 66 69 76 | mpbi2and | |- ( ( y e. On /\ f : y -1-1-> A ) -> ( y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) /\ f = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) ) |
| 78 | 77 | simpld | |- ( ( y e. On /\ f : y -1-1-> A ) -> y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) |
| 79 | 71 71 | xpex | |- ( ran f X. ran f ) e. _V |
| 80 | 79 | inex2 | |- ( ( R u. _I ) i^i ( ran f X. ran f ) ) e. _V |
| 81 | sseq1 | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( r C_ ( ran f X. ran f ) <-> ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) ) |
|
| 82 | 34 81 | mpbiri | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> r C_ ( ran f X. ran f ) ) |
| 83 | dmss | |- ( r C_ ( ran f X. ran f ) -> dom r C_ dom ( ran f X. ran f ) ) |
|
| 84 | 82 83 | syl | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> dom r C_ dom ( ran f X. ran f ) ) |
| 85 | dmxpid | |- dom ( ran f X. ran f ) = ran f |
|
| 86 | 84 85 | sseqtrdi | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> dom r C_ ran f ) |
| 87 | dmresi | |- dom ( _I |` ran f ) = ran f |
|
| 88 | sseq2 | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( _I |` ran f ) C_ r <-> ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) ) ) |
|
| 89 | 32 88 | mpbiri | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( _I |` ran f ) C_ r ) |
| 90 | dmss | |- ( ( _I |` ran f ) C_ r -> dom ( _I |` ran f ) C_ dom r ) |
|
| 91 | 89 90 | syl | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> dom ( _I |` ran f ) C_ dom r ) |
| 92 | 87 91 | eqsstrrid | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ran f C_ dom r ) |
| 93 | 86 92 | eqssd | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> dom r = ran f ) |
| 94 | 93 | sseq1d | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( dom r C_ A <-> ran f C_ A ) ) |
| 95 | 93 | reseq2d | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( _I |` dom r ) = ( _I |` ran f ) ) |
| 96 | id | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) ) |
|
| 97 | 95 96 | sseq12d | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( _I |` dom r ) C_ r <-> ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) ) ) |
| 98 | 93 | sqxpeqd | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( dom r X. dom r ) = ( ran f X. ran f ) ) |
| 99 | 96 98 | sseq12d | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( r C_ ( dom r X. dom r ) <-> ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) ) |
| 100 | 94 97 99 | 3anbi123d | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) <-> ( ran f C_ A /\ ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) /\ ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) ) ) |
| 101 | difeq1 | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( r \ _I ) = ( ( ( R u. _I ) i^i ( ran f X. ran f ) ) \ _I ) ) |
|
| 102 | difun2 | |- ( ( R u. _I ) \ _I ) = ( R \ _I ) |
|
| 103 | 102 | ineq1i | |- ( ( ( R u. _I ) \ _I ) i^i ( ran f X. ran f ) ) = ( ( R \ _I ) i^i ( ran f X. ran f ) ) |
| 104 | indif1 | |- ( ( ( R u. _I ) \ _I ) i^i ( ran f X. ran f ) ) = ( ( ( R u. _I ) i^i ( ran f X. ran f ) ) \ _I ) |
|
| 105 | indif1 | |- ( ( R \ _I ) i^i ( ran f X. ran f ) ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) |
|
| 106 | 103 104 105 | 3eqtr3i | |- ( ( ( R u. _I ) i^i ( ran f X. ran f ) ) \ _I ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) |
| 107 | 101 106 | eqtrdi | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( r \ _I ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) ) |
| 108 | 107 93 | weeq12d | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( r \ _I ) We dom r <-> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) ) |
| 109 | 100 108 | anbi12d | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) <-> ( ( ran f C_ A /\ ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) /\ ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) /\ ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) ) ) |
| 110 | oieq1 | |- ( ( r \ _I ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) -> OrdIso ( ( r \ _I ) , dom r ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , dom r ) ) |
|
| 111 | 107 110 | syl | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> OrdIso ( ( r \ _I ) , dom r ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , dom r ) ) |
| 112 | oieq2 | |- ( dom r = ran f -> OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , dom r ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) |
|
| 113 | 93 112 | syl | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , dom r ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) |
| 114 | 111 113 | eqtrd | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> OrdIso ( ( r \ _I ) , dom r ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) |
| 115 | 114 | dmeqd | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> dom OrdIso ( ( r \ _I ) , dom r ) = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) |
| 116 | 115 | eqeq2d | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( y = dom OrdIso ( ( r \ _I ) , dom r ) <-> y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) ) |
| 117 | 109 116 | anbi12d | |- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) <-> ( ( ( ran f C_ A /\ ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) /\ ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) /\ ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) /\ y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) ) ) |
| 118 | 80 117 | spcev | |- ( ( ( ( ran f C_ A /\ ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) /\ ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) /\ ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) /\ y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) -> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) |
| 119 | 36 65 78 118 | syl21anc | |- ( ( y e. On /\ f : y -1-1-> A ) -> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) |
| 120 | 119 | ex | |- ( y e. On -> ( f : y -1-1-> A -> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) ) |
| 121 | 120 | exlimdv | |- ( y e. On -> ( E. f f : y -1-1-> A -> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) ) |
| 122 | brdomi | |- ( y ~<_ A -> E. f f : y -1-1-> A ) |
|
| 123 | 121 122 | impel | |- ( ( y e. On /\ y ~<_ A ) -> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) |
| 124 | simpr | |- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> y = dom OrdIso ( ( r \ _I ) , dom r ) ) |
|
| 125 | vex | |- r e. _V |
|
| 126 | 125 | dmex | |- dom r e. _V |
| 127 | eqid | |- OrdIso ( ( r \ _I ) , dom r ) = OrdIso ( ( r \ _I ) , dom r ) |
|
| 128 | 127 | oion | |- ( dom r e. _V -> dom OrdIso ( ( r \ _I ) , dom r ) e. On ) |
| 129 | 126 128 | ax-mp | |- dom OrdIso ( ( r \ _I ) , dom r ) e. On |
| 130 | 124 129 | eqeltrdi | |- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> y e. On ) |
| 131 | 130 | adantl | |- ( ( A e. V /\ ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) -> y e. On ) |
| 132 | simplr | |- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> ( r \ _I ) We dom r ) |
|
| 133 | 127 | oien | |- ( ( dom r e. _V /\ ( r \ _I ) We dom r ) -> dom OrdIso ( ( r \ _I ) , dom r ) ~~ dom r ) |
| 134 | 126 132 133 | sylancr | |- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> dom OrdIso ( ( r \ _I ) , dom r ) ~~ dom r ) |
| 135 | 124 134 | eqbrtrd | |- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> y ~~ dom r ) |
| 136 | ssdomg | |- ( A e. V -> ( dom r C_ A -> dom r ~<_ A ) ) |
|
| 137 | simpll1 | |- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> dom r C_ A ) |
|
| 138 | 136 137 | impel | |- ( ( A e. V /\ ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) -> dom r ~<_ A ) |
| 139 | endomtr | |- ( ( y ~~ dom r /\ dom r ~<_ A ) -> y ~<_ A ) |
|
| 140 | 135 138 139 | syl2an2 | |- ( ( A e. V /\ ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) -> y ~<_ A ) |
| 141 | 131 140 | jca | |- ( ( A e. V /\ ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) -> ( y e. On /\ y ~<_ A ) ) |
| 142 | 141 | ex | |- ( A e. V -> ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> ( y e. On /\ y ~<_ A ) ) ) |
| 143 | 142 | exlimdv | |- ( A e. V -> ( E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> ( y e. On /\ y ~<_ A ) ) ) |
| 144 | 123 143 | impbid2 | |- ( A e. V -> ( ( y e. On /\ y ~<_ A ) <-> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) ) |
| 145 | 24 144 | bitrid | |- ( A e. V -> ( y e. { x e. On | x ~<_ A } <-> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) ) |
| 146 | 145 | eqabdv | |- ( A e. V -> { x e. On | x ~<_ A } = { y | E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
| 147 | 22 146 | eqtr4id | |- ( A e. V -> ran F = { x e. On | x ~<_ A } ) |
| 148 | 16 19 147 | 3pm3.2i | |- ( dom F C_ ~P ( A X. A ) /\ Fun F /\ ( A e. V -> ran F = { x e. On | x ~<_ A } ) ) |