This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any one-to-one onto function determines an isomorphism with an induced relation S . Proposition 6.33 of TakeutiZaring p. 34. (Contributed by NM, 30-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oiso | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | f1of1 | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –1-1→ 𝐵 ) | |
| 3 | df-br | ⊢ ( ( 𝐻 ‘ 𝑣 ) 𝑆 ( 𝐻 ‘ 𝑢 ) ↔ 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ 𝑆 ) | |
| 4 | eleq2 | ⊢ ( 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } → ( 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ 𝑆 ↔ 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) ) | |
| 5 | fvex | ⊢ ( 𝐻 ‘ 𝑣 ) ∈ V | |
| 6 | fvex | ⊢ ( 𝐻 ‘ 𝑢 ) ∈ V | |
| 7 | eqeq1 | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑣 ) → ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ↔ ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ) ) | |
| 8 | 7 | anbi1d | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑣 ) → ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ↔ ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 9 | 8 | anbi1d | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑣 ) → ( ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 10 | 9 | 2rexbidv | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑣 ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 11 | eqeq1 | ⊢ ( 𝑤 = ( 𝐻 ‘ 𝑢 ) → ( 𝑤 = ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ) | |
| 12 | 11 | anbi2d | ⊢ ( 𝑤 = ( 𝐻 ‘ 𝑢 ) → ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ↔ ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 13 | 12 | anbi1d | ⊢ ( 𝑤 = ( 𝐻 ‘ 𝑢 ) → ( ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 14 | 13 | 2rexbidv | ⊢ ( 𝑤 = ( 𝐻 ‘ 𝑢 ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 15 | 5 6 10 14 | opelopab | ⊢ ( 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ) |
| 16 | anass | ⊢ ( ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) | |
| 17 | f1fveq | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ↔ 𝑣 = 𝑥 ) ) | |
| 18 | equcom | ⊢ ( 𝑣 = 𝑥 ↔ 𝑥 = 𝑣 ) | |
| 19 | 17 18 | bitrdi | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ↔ 𝑥 = 𝑣 ) ) |
| 20 | 19 | anassrs | ⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ↔ 𝑥 = 𝑣 ) ) |
| 21 | 20 | anbi1d | ⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ↔ ( 𝑥 = 𝑣 ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 22 | 16 21 | bitrid | ⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 = 𝑣 ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 23 | 22 | rexbidv | ⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑣 ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 24 | r19.42v | ⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑣 ∧ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ↔ ( 𝑥 = 𝑣 ∧ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) | |
| 25 | 23 24 | bitrdi | ⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 = 𝑣 ∧ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 26 | 25 | rexbidva | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑣 ∧ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 27 | breq1 | ⊢ ( 𝑥 = 𝑣 → ( 𝑥 𝑅 𝑦 ↔ 𝑣 𝑅 𝑦 ) ) | |
| 28 | 27 | anbi2d | ⊢ ( 𝑥 = 𝑣 → ( ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ) ) |
| 29 | 28 | rexbidv | ⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ) ) |
| 30 | 29 | ceqsrexv | ⊢ ( 𝑣 ∈ 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑣 ∧ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ↔ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑣 ∧ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ↔ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ) ) |
| 32 | 26 31 | bitrd | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ) ) |
| 33 | f1fveq | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ↔ 𝑢 = 𝑦 ) ) | |
| 34 | equcom | ⊢ ( 𝑢 = 𝑦 ↔ 𝑦 = 𝑢 ) | |
| 35 | 33 34 | bitrdi | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ↔ 𝑦 = 𝑢 ) ) |
| 36 | 35 | anassrs | ⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ↔ 𝑦 = 𝑢 ) ) |
| 37 | 36 | anbi1d | ⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ↔ ( 𝑦 = 𝑢 ∧ 𝑣 𝑅 𝑦 ) ) ) |
| 38 | 37 | rexbidva | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑢 ∧ 𝑣 𝑅 𝑦 ) ) ) |
| 39 | breq2 | ⊢ ( 𝑦 = 𝑢 → ( 𝑣 𝑅 𝑦 ↔ 𝑣 𝑅 𝑢 ) ) | |
| 40 | 39 | ceqsrexv | ⊢ ( 𝑢 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑢 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 𝑅 𝑢 ) ) |
| 41 | 40 | adantl | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑢 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 𝑅 𝑢 ) ) |
| 42 | 38 41 | bitrd | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 𝑅 𝑢 ) ) |
| 43 | 32 42 | sylan9bb | ⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑢 ∈ 𝐴 ) ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ 𝑣 𝑅 𝑢 ) ) |
| 44 | 43 | anandis | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐻 ‘ 𝑣 ) = ( 𝐻 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ 𝑣 𝑅 𝑢 ) ) |
| 45 | 15 44 | bitrid | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ↔ 𝑣 𝑅 𝑢 ) ) |
| 46 | 4 45 | sylan9bbr | ⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) → ( 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ 𝑆 ↔ 𝑣 𝑅 𝑢 ) ) |
| 47 | 46 | an32s | ⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( 〈 ( 𝐻 ‘ 𝑣 ) , ( 𝐻 ‘ 𝑢 ) 〉 ∈ 𝑆 ↔ 𝑣 𝑅 𝑢 ) ) |
| 48 | 3 47 | bitr2id | ⊢ ( ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( 𝑣 𝑅 𝑢 ↔ ( 𝐻 ‘ 𝑣 ) 𝑆 ( 𝐻 ‘ 𝑢 ) ) ) |
| 49 | 48 | ralrimivva | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) → ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 𝑅 𝑢 ↔ ( 𝐻 ‘ 𝑣 ) 𝑆 ( 𝐻 ‘ 𝑢 ) ) ) |
| 50 | 2 49 | sylan | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) → ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 𝑅 𝑢 ↔ ( 𝐻 ‘ 𝑣 ) 𝑆 ( 𝐻 ‘ 𝑢 ) ) ) |
| 51 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 𝑅 𝑢 ↔ ( 𝐻 ‘ 𝑣 ) 𝑆 ( 𝐻 ‘ 𝑢 ) ) ) ) | |
| 52 | 1 50 51 | sylanbrc | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑆 = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑧 = ( 𝐻 ‘ 𝑥 ) ∧ 𝑤 = ( 𝐻 ‘ 𝑦 ) ) ∧ 𝑥 𝑅 𝑦 ) } ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |