This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in Schechter p. 51. (Contributed by NM, 9-Sep-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intirr | ⊢ ( ( 𝑅 ∩ I ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 𝑅 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | ⊢ ( 𝑅 ∩ I ) = ( I ∩ 𝑅 ) | |
| 2 | 1 | eqeq1i | ⊢ ( ( 𝑅 ∩ I ) = ∅ ↔ ( I ∩ 𝑅 ) = ∅ ) |
| 3 | disj2 | ⊢ ( ( I ∩ 𝑅 ) = ∅ ↔ I ⊆ ( V ∖ 𝑅 ) ) | |
| 4 | reli | ⊢ Rel I | |
| 5 | ssrel | ⊢ ( Rel I → ( I ⊆ ( V ∖ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ I → 〈 𝑥 , 𝑦 〉 ∈ ( V ∖ 𝑅 ) ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( I ⊆ ( V ∖ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ I → 〈 𝑥 , 𝑦 〉 ∈ ( V ∖ 𝑅 ) ) ) |
| 7 | 2 3 6 | 3bitri | ⊢ ( ( 𝑅 ∩ I ) = ∅ ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ I → 〈 𝑥 , 𝑦 〉 ∈ ( V ∖ 𝑅 ) ) ) |
| 8 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 9 | vex | ⊢ 𝑦 ∈ V | |
| 10 | 9 | ideq | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 11 | df-br | ⊢ ( 𝑥 I 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ I ) | |
| 12 | 8 10 11 | 3bitr2i | ⊢ ( 𝑦 = 𝑥 ↔ 〈 𝑥 , 𝑦 〉 ∈ I ) |
| 13 | opex | ⊢ 〈 𝑥 , 𝑦 〉 ∈ V | |
| 14 | 13 | biantrur | ⊢ ( ¬ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ↔ ( 〈 𝑥 , 𝑦 〉 ∈ V ∧ ¬ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) ) |
| 15 | eldif | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( V ∖ 𝑅 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ V ∧ ¬ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) ) | |
| 16 | 14 15 | bitr4i | ⊢ ( ¬ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( V ∖ 𝑅 ) ) |
| 17 | df-br | ⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) | |
| 18 | 16 17 | xchnxbir | ⊢ ( ¬ 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( V ∖ 𝑅 ) ) |
| 19 | 12 18 | imbi12i | ⊢ ( ( 𝑦 = 𝑥 → ¬ 𝑥 𝑅 𝑦 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ I → 〈 𝑥 , 𝑦 〉 ∈ ( V ∖ 𝑅 ) ) ) |
| 20 | 19 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑥 → ¬ 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ I → 〈 𝑥 , 𝑦 〉 ∈ ( V ∖ 𝑅 ) ) ) |
| 21 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 22 | 21 | notbid | ⊢ ( 𝑦 = 𝑥 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑥 𝑅 𝑥 ) ) |
| 23 | 22 | equsalvw | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → ¬ 𝑥 𝑅 𝑦 ) ↔ ¬ 𝑥 𝑅 𝑥 ) |
| 24 | 23 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑥 → ¬ 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ¬ 𝑥 𝑅 𝑥 ) |
| 25 | 7 20 24 | 3bitr2i | ⊢ ( ( 𝑅 ∩ I ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 𝑅 𝑥 ) |