This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Fundamental Theorem of Calculus, part one. The function G formed by varying the right endpoint of an integral of F is continuous if F is integrable. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | ||
| ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | ||
| ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | ||
| ftc1a.f | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) | ||
| Assertion | ftc1a | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| 2 | ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | |
| 7 | ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | |
| 8 | ftc1a.f | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) | |
| 9 | 1 2 3 4 5 6 7 8 | ftc1lem2 | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 10 | fvexd | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑤 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑤 ) ∈ V ) | |
| 11 | 8 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
| 12 | 11 7 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑤 ) ) ∈ 𝐿1 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( 𝑤 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑤 ) ) ∈ 𝐿1 ) |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → 𝑒 ∈ ℝ+ ) | |
| 15 | 10 13 14 | itgcn | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) |
| 16 | oveq12 | ⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( 𝑠 − 𝑟 ) = ( 𝑧 − 𝑦 ) ) | |
| 17 | 16 | fveq2d | ⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( abs ‘ ( 𝑠 − 𝑟 ) ) = ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 18 | 17 | breq1d | ⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 ↔ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) |
| 19 | fveq2 | ⊢ ( 𝑠 = 𝑧 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 20 | fveq2 | ⊢ ( 𝑟 = 𝑦 → ( 𝐺 ‘ 𝑟 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 21 | 19 20 | oveqan12d | ⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) = ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 23 | 22 | breq1d | ⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 24 | 18 23 | imbi12d | ⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
| 25 | 24 | ancoms | ⊢ ( ( 𝑟 = 𝑦 ∧ 𝑠 = 𝑧 ) → ( ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
| 26 | oveq12 | ⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( 𝑠 − 𝑟 ) = ( 𝑦 − 𝑧 ) ) | |
| 27 | 26 | fveq2d | ⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( abs ‘ ( 𝑠 − 𝑟 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 28 | 27 | breq1d | ⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 ↔ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑑 ) ) |
| 29 | fveq2 | ⊢ ( 𝑠 = 𝑦 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 30 | fveq2 | ⊢ ( 𝑟 = 𝑧 → ( 𝐺 ‘ 𝑟 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 31 | 29 30 | oveqan12d | ⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) = ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) |
| 32 | 31 | fveq2d | ⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 33 | 32 | breq1d | ⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑒 ) ) |
| 34 | 28 33 | imbi12d | ⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑒 ) ) ) |
| 35 | 34 | ancoms | ⊢ ( ( 𝑟 = 𝑧 ∧ 𝑠 = 𝑦 ) → ( ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑒 ) ) ) |
| 36 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 37 | 2 3 36 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 38 | 37 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 39 | 37 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 40 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 41 | 39 40 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑧 ∈ ℝ ) |
| 42 | 41 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑧 ∈ ℂ ) |
| 43 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 44 | 39 43 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑦 ∈ ℝ ) |
| 45 | 44 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑦 ∈ ℂ ) |
| 46 | 42 45 | abssubd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 47 | 46 | breq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ↔ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑑 ) ) |
| 48 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 49 | 48 40 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 50 | 48 43 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℂ ) |
| 51 | 49 50 | abssubd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 52 | 51 | breq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑒 ) ) |
| 53 | 47 52 | imbi12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑒 ) ) ) |
| 54 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝑦 ≤ 𝑧 ) | |
| 55 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐴 ∈ ℝ ) |
| 56 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐵 ∈ ℝ ) |
| 57 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐴 ≤ 𝐵 ) |
| 58 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 59 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐷 ⊆ ℝ ) |
| 60 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐹 ∈ 𝐿1 ) |
| 61 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐹 : 𝐷 ⟶ ℂ ) |
| 62 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 63 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 64 | 1 55 56 57 58 59 60 61 62 63 | ftc1lem1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝑧 ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) = ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 65 | 54 64 | mpdan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) = ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 66 | 65 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) = ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 67 | 66 | ad2ant2r | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) = ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 68 | 67 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) = ( abs ‘ ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
| 69 | fvexd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) ∧ 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) | |
| 70 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝐴 ∈ ℝ ) |
| 71 | 70 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝐴 ∈ ℝ* ) |
| 72 | simprl1 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 73 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝐵 ∈ ℝ ) |
| 74 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) | |
| 75 | 70 73 74 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 76 | 72 75 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
| 77 | 76 | simp2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝐴 ≤ 𝑦 ) |
| 78 | iooss1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑦 ) → ( 𝑦 (,) 𝑧 ) ⊆ ( 𝐴 (,) 𝑧 ) ) | |
| 79 | 71 77 78 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 (,) 𝑧 ) ⊆ ( 𝐴 (,) 𝑧 ) ) |
| 80 | 73 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝐵 ∈ ℝ* ) |
| 81 | simprl2 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 82 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) ) | |
| 83 | 70 73 82 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) ) |
| 84 | 81 83 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) |
| 85 | 84 | simp3d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑧 ≤ 𝐵 ) |
| 86 | iooss2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑧 ≤ 𝐵 ) → ( 𝐴 (,) 𝑧 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 87 | 80 85 86 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝐴 (,) 𝑧 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 88 | 79 87 | sstrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 (,) 𝑧 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 89 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 90 | 88 89 | sstrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 (,) 𝑧 ) ⊆ 𝐷 ) |
| 91 | ioombl | ⊢ ( 𝑦 (,) 𝑧 ) ∈ dom vol | |
| 92 | 91 | a1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 (,) 𝑧 ) ∈ dom vol ) |
| 93 | fvexd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) | |
| 94 | 8 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 95 | 94 7 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 96 | 95 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 97 | 90 92 93 96 | iblss | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 98 | 69 97 | itgcl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
| 99 | 98 | abscld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ∈ ℝ ) |
| 100 | iblmbf | ⊢ ( ( 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 → ( 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ) | |
| 101 | 97 100 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ) |
| 102 | 101 69 | mbfmptcl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) ∧ 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 103 | 102 | abscld | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) ∧ 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 104 | 69 97 | iblabs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) |
| 105 | 103 104 | itgrecl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 ∈ ℝ ) |
| 106 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) → 𝑒 ∈ ℝ+ ) | |
| 107 | 106 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑒 ∈ ℝ+ ) |
| 108 | 107 | rpred | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑒 ∈ ℝ ) |
| 109 | 69 97 | itgabs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ≤ ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 ) |
| 110 | mblvol | ⊢ ( ( 𝑦 (,) 𝑧 ) ∈ dom vol → ( vol ‘ ( 𝑦 (,) 𝑧 ) ) = ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ) | |
| 111 | 91 110 | ax-mp | ⊢ ( vol ‘ ( 𝑦 (,) 𝑧 ) ) = ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) |
| 112 | ioossre | ⊢ ( 𝑦 (,) 𝑧 ) ⊆ ℝ | |
| 113 | ovolcl | ⊢ ( ( 𝑦 (,) 𝑧 ) ⊆ ℝ → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ∈ ℝ* ) | |
| 114 | 112 113 | mp1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ∈ ℝ* ) |
| 115 | 84 | simp1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑧 ∈ ℝ ) |
| 116 | 76 | simp1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑦 ∈ ℝ ) |
| 117 | 115 116 | resubcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑧 − 𝑦 ) ∈ ℝ ) |
| 118 | 117 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑧 − 𝑦 ) ∈ ℝ* ) |
| 119 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) → 𝑑 ∈ ℝ+ ) | |
| 120 | 119 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑑 ∈ ℝ+ ) |
| 121 | 120 | rpxrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑑 ∈ ℝ* ) |
| 122 | ioossicc | ⊢ ( 𝑦 (,) 𝑧 ) ⊆ ( 𝑦 [,] 𝑧 ) | |
| 123 | iccssre | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 [,] 𝑧 ) ⊆ ℝ ) | |
| 124 | 116 115 123 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 [,] 𝑧 ) ⊆ ℝ ) |
| 125 | ovolss | ⊢ ( ( ( 𝑦 (,) 𝑧 ) ⊆ ( 𝑦 [,] 𝑧 ) ∧ ( 𝑦 [,] 𝑧 ) ⊆ ℝ ) → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ≤ ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) | |
| 126 | 122 124 125 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ≤ ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) |
| 127 | simprl3 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑦 ≤ 𝑧 ) | |
| 128 | ovolicc | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) → ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) = ( 𝑧 − 𝑦 ) ) | |
| 129 | 116 115 127 128 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) = ( 𝑧 − 𝑦 ) ) |
| 130 | 126 129 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ≤ ( 𝑧 − 𝑦 ) ) |
| 131 | 116 115 127 | abssubge0d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( 𝑧 − 𝑦 ) ) |
| 132 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) | |
| 133 | 131 132 | eqbrtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑧 − 𝑦 ) < 𝑑 ) |
| 134 | 114 118 121 130 133 | xrlelttrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) |
| 135 | 111 134 | eqbrtrid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) |
| 136 | sseq1 | ⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( 𝑢 ⊆ 𝐷 ↔ ( 𝑦 (,) 𝑧 ) ⊆ 𝐷 ) ) | |
| 137 | fveq2 | ⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( vol ‘ 𝑢 ) = ( vol ‘ ( 𝑦 (,) 𝑧 ) ) ) | |
| 138 | 137 | breq1d | ⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( ( vol ‘ 𝑢 ) < 𝑑 ↔ ( vol ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) ) |
| 139 | 136 138 | anbi12d | ⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) ↔ ( ( 𝑦 (,) 𝑧 ) ⊆ 𝐷 ∧ ( vol ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) ) ) |
| 140 | 2fveq3 | ⊢ ( 𝑤 = 𝑡 → ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) | |
| 141 | 140 | cbvitgv | ⊢ ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 = ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 |
| 142 | itgeq1 | ⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 = ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 ) | |
| 143 | 141 142 | eqtrid | ⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 = ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 ) |
| 144 | 143 | breq1d | ⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ↔ ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 < 𝑒 ) ) |
| 145 | 139 144 | imbi12d | ⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ↔ ( ( ( 𝑦 (,) 𝑧 ) ⊆ 𝐷 ∧ ( vol ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) → ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 < 𝑒 ) ) ) |
| 146 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) | |
| 147 | 145 146 92 | rspcdva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( ( ( 𝑦 (,) 𝑧 ) ⊆ 𝐷 ∧ ( vol ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) → ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 < 𝑒 ) ) |
| 148 | 90 135 147 | mp2and | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 < 𝑒 ) |
| 149 | 99 105 108 109 148 | lelttrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) < 𝑒 ) |
| 150 | 68 149 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) |
| 151 | 150 | expr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 152 | 25 35 38 53 151 | wlogle | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 153 | 152 | ralrimivva | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 154 | 153 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) → ( ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
| 155 | 154 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
| 156 | 155 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
| 157 | 15 156 | mpd | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 158 | r19.12 | ⊢ ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) | |
| 159 | 157 158 | syl | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 160 | 159 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 161 | ralcom | ⊢ ( ∀ 𝑒 ∈ ℝ+ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) | |
| 162 | 160 161 | sylib | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 163 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 164 | 37 163 | sstrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 165 | ssid | ⊢ ℂ ⊆ ℂ | |
| 166 | elcncf2 | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) ) | |
| 167 | 164 165 166 | sylancl | ⊢ ( 𝜑 → ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) ) |
| 168 | 9 162 167 | mpbir2and | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |