This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvitg.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| Assertion | cbvitgv | ⊢ ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvitg.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| 2 | 1 | fvoveq1d | ⊢ ( 𝑥 = 𝑦 → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) |
| 3 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 4 | 3 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) ) ) |
| 5 | 4 | ifbid | ⊢ ( 𝑥 = 𝑦 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) = if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) |
| 6 | 2 5 | csbeq12dv | ⊢ ( 𝑥 = 𝑦 → ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) = ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) |
| 7 | 6 | cbvmptv | ⊢ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) = ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) |
| 8 | 7 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) = ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) |
| 9 | 8 | oveq2i | ⊢ ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) |
| 10 | 9 | a1i | ⊢ ( ⊤ → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) ) |
| 11 | 10 | sumeq2sdv | ⊢ ( ⊤ → Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) ) |
| 12 | 11 | mptru | ⊢ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) |
| 13 | df-itg | ⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) | |
| 14 | df-itg | ⊢ ∫ 𝐴 𝐶 d 𝑦 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) | |
| 15 | 12 13 14 | 3eqtr4i | ⊢ ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑦 |