This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation of restricted universal quantifiers. See ralcom2 for a version without disjoint variable condition on x , y . This theorem should be used in place of ralcom2 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999) (Revised by Mario Carneiro, 14-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomst | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) | |
| 2 | 1 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
| 3 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
| 5 | r2al | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ) | |
| 6 | r2al | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) | |
| 7 | 4 5 6 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ) |