This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.12 . (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) Avoid ax-13 , ax-ext . (Revised by Wolf Lammen, 17-Jun-2023) (Proof shortened by Wolf Lammen, 4-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.12 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 2 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 | |
| 3 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 𝜑 | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝜑 ) |
| 5 | 4 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝜑 ) |
| 6 | 1 5 | nfxfr | ⊢ Ⅎ 𝑦 ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 |
| 7 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝜑 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) | |
| 8 | 7 | com12 | ⊢ ( 𝑦 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 𝜑 → 𝜑 ) ) |
| 9 | 8 | reximdv | ⊢ ( 𝑦 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 10 | 9 | com12 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 11 | 6 10 | ralrimi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) |