This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fnwe2 . An element which is in a minimal fiber and minimal within its fiber is minimal globally; thus T is well-founded. (Contributed by Stefan O'Rear, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnwe2.su | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) | |
| fnwe2.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } | ||
| fnwe2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) | ||
| fnwe2.f | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) | ||
| fnwe2.r | ⊢ ( 𝜑 → 𝑅 We 𝐵 ) | ||
| fnwe2lem2.a | ⊢ ( 𝜑 → 𝑎 ⊆ 𝐴 ) | ||
| fnwe2lem2.n0 | ⊢ ( 𝜑 → 𝑎 ≠ ∅ ) | ||
| Assertion | fnwe2lem2 | ⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.su | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) | |
| 2 | fnwe2.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } | |
| 3 | fnwe2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) | |
| 4 | fnwe2.f | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) | |
| 5 | fnwe2.r | ⊢ ( 𝜑 → 𝑅 We 𝐵 ) | |
| 6 | fnwe2lem2.a | ⊢ ( 𝜑 → 𝑎 ⊆ 𝐴 ) | |
| 7 | fnwe2lem2.n0 | ⊢ ( 𝜑 → 𝑎 ≠ ∅ ) | |
| 8 | ffun | ⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 → Fun ( 𝐹 ↾ 𝐴 ) ) | |
| 9 | vex | ⊢ 𝑎 ∈ V | |
| 10 | 9 | funimaex | ⊢ ( Fun ( 𝐹 ↾ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∈ V ) |
| 11 | 4 8 10 | 3syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∈ V ) |
| 12 | wefr | ⊢ ( 𝑅 We 𝐵 → 𝑅 Fr 𝐵 ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝑅 Fr 𝐵 ) |
| 14 | imassrn | ⊢ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ⊆ ran ( 𝐹 ↾ 𝐴 ) | |
| 15 | 4 | frnd | ⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝐴 ) ⊆ 𝐵 ) |
| 16 | 14 15 | sstrid | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ⊆ 𝐵 ) |
| 17 | incom | ⊢ ( dom ( 𝐹 ↾ 𝐴 ) ∩ 𝑎 ) = ( 𝑎 ∩ dom ( 𝐹 ↾ 𝐴 ) ) | |
| 18 | 4 | fdmd | ⊢ ( 𝜑 → dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ) |
| 19 | 6 18 | sseqtrrd | ⊢ ( 𝜑 → 𝑎 ⊆ dom ( 𝐹 ↾ 𝐴 ) ) |
| 20 | dfss2 | ⊢ ( 𝑎 ⊆ dom ( 𝐹 ↾ 𝐴 ) ↔ ( 𝑎 ∩ dom ( 𝐹 ↾ 𝐴 ) ) = 𝑎 ) | |
| 21 | 19 20 | sylib | ⊢ ( 𝜑 → ( 𝑎 ∩ dom ( 𝐹 ↾ 𝐴 ) ) = 𝑎 ) |
| 22 | 17 21 | eqtrid | ⊢ ( 𝜑 → ( dom ( 𝐹 ↾ 𝐴 ) ∩ 𝑎 ) = 𝑎 ) |
| 23 | 22 7 | eqnetrd | ⊢ ( 𝜑 → ( dom ( 𝐹 ↾ 𝐴 ) ∩ 𝑎 ) ≠ ∅ ) |
| 24 | imadisj | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) = ∅ ↔ ( dom ( 𝐹 ↾ 𝐴 ) ∩ 𝑎 ) = ∅ ) | |
| 25 | 24 | necon3bii | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ≠ ∅ ↔ ( dom ( 𝐹 ↾ 𝐴 ) ∩ 𝑎 ) ≠ ∅ ) |
| 26 | 23 25 | sylibr | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ≠ ∅ ) |
| 27 | fri | ⊢ ( ( ( ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∈ V ∧ 𝑅 Fr 𝐵 ) ∧ ( ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ⊆ 𝐵 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ≠ ∅ ) ) → ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ) | |
| 28 | 11 13 16 26 27 | syl22anc | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ) |
| 29 | df-ima | ⊢ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) = ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) | |
| 30 | 29 | rexeqi | ⊢ ( ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∃ 𝑑 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ) |
| 31 | 4 | ffnd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
| 32 | fnssres | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ∧ 𝑎 ⊆ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) Fn 𝑎 ) | |
| 33 | 31 6 32 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) Fn 𝑎 ) |
| 34 | breq2 | ⊢ ( 𝑑 = ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) → ( 𝑒 𝑅 𝑑 ↔ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) | |
| 35 | 34 | notbid | ⊢ ( 𝑑 = ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) → ( ¬ 𝑒 𝑅 𝑑 ↔ ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 36 | 35 | ralbidv | ⊢ ( 𝑑 = ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) → ( ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 37 | 36 | rexrn | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) Fn 𝑎 → ( ∃ 𝑑 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∃ 𝑓 ∈ 𝑎 ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 38 | 33 37 | syl | ⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∃ 𝑓 ∈ 𝑎 ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 39 | 30 38 | bitrid | ⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∃ 𝑓 ∈ 𝑎 ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 40 | 29 | raleqi | ⊢ ( ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑒 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) |
| 41 | breq1 | ⊢ ( 𝑒 = ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) → ( 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) | |
| 42 | 41 | notbid | ⊢ ( 𝑒 = ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) → ( ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 43 | 42 | ralrn | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) Fn 𝑎 → ( ∀ 𝑒 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 44 | 33 43 | syl | ⊢ ( 𝜑 → ( ∀ 𝑒 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 45 | 40 44 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) → ( ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 47 | 6 | resabs1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) = ( 𝐹 ↾ 𝑎 ) ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) = ( 𝐹 ↾ 𝑎 ) ) |
| 49 | 48 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) = ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑑 ) ) |
| 50 | fvres | ⊢ ( 𝑑 ∈ 𝑎 → ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) | |
| 51 | 50 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) |
| 52 | 49 51 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) |
| 53 | 48 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) = ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑓 ) ) |
| 54 | fvres | ⊢ ( 𝑓 ∈ 𝑎 → ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) | |
| 55 | 54 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 56 | 53 55 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 57 | 52 56 | breq12d | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 58 | 57 | notbid | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 59 | 58 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) → ( ∀ 𝑑 ∈ 𝑎 ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 60 | 46 59 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) → ( ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 61 | 60 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝑎 ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∃ 𝑓 ∈ 𝑎 ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 62 | 39 61 | bitrd | ⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∃ 𝑓 ∈ 𝑎 ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 63 | 9 | inex1 | ⊢ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∈ V |
| 64 | 63 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∈ V ) |
| 65 | 6 | sselda | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) → 𝑓 ∈ 𝐴 ) |
| 66 | 1 2 3 | fnwe2lem1 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 67 | wefr | ⊢ ( ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 Fr { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) | |
| 68 | 66 67 | syl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 Fr { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 69 | 65 68 | syldan | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 Fr { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 70 | 69 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 Fr { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 71 | inss2 | ⊢ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ⊆ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } | |
| 72 | 71 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ⊆ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 73 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → 𝑓 ∈ 𝑎 ) | |
| 74 | fveqeq2 | ⊢ ( 𝑦 = 𝑓 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) ) | |
| 75 | 65 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → 𝑓 ∈ 𝐴 ) |
| 76 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( 𝐹 ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) | |
| 77 | 74 75 76 | elrabd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → 𝑓 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 78 | 73 77 | elind | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → 𝑓 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ) |
| 79 | 78 | ne0d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ≠ ∅ ) |
| 80 | fri | ⊢ ( ( ( ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∈ V ∧ ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 Fr { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∧ ( ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ⊆ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ∧ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ≠ ∅ ) ) → ∃ 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) | |
| 81 | 64 70 72 79 80 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ∃ 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) |
| 82 | elin | ⊢ ( 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑒 ∈ 𝑎 ∧ 𝑒 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ) | |
| 83 | fveqeq2 | ⊢ ( 𝑦 = 𝑒 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) | |
| 84 | 83 | elrab | ⊢ ( 𝑒 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ↔ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) |
| 85 | 84 | anbi2i | ⊢ ( ( 𝑒 ∈ 𝑎 ∧ 𝑒 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 86 | 82 85 | bitri | ⊢ ( 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 87 | elin | ⊢ ( 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑔 ∈ 𝑎 ∧ 𝑔 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ) | |
| 88 | fveqeq2 | ⊢ ( 𝑦 = 𝑔 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) | |
| 89 | 88 | elrab | ⊢ ( 𝑔 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ↔ ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) |
| 90 | 89 | anbi2i | ⊢ ( ( 𝑔 ∈ 𝑎 ∧ 𝑔 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑔 ∈ 𝑎 ∧ ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 91 | 87 90 | bitri | ⊢ ( 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑔 ∈ 𝑎 ∧ ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 92 | 91 | imbi1i | ⊢ ( ( 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ↔ ( ( 𝑔 ∈ 𝑎 ∧ ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 93 | impexp | ⊢ ( ( ( 𝑔 ∈ 𝑎 ∧ ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ↔ ( 𝑔 ∈ 𝑎 → ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) | |
| 94 | 92 93 | bitri | ⊢ ( ( 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ↔ ( 𝑔 ∈ 𝑎 → ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) |
| 95 | 94 | ralbii2 | ⊢ ( ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ↔ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 96 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) → 𝑒 ∈ 𝑎 ) | |
| 97 | fveq2 | ⊢ ( 𝑑 = 𝑐 → ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑐 ) ) | |
| 98 | 97 | breq1d | ⊢ ( 𝑑 = 𝑐 → ( ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 99 | 98 | notbid | ⊢ ( 𝑑 = 𝑐 → ( ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ↔ ¬ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 100 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) → ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) | |
| 101 | 100 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) |
| 102 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → 𝑐 ∈ 𝑎 ) | |
| 103 | 99 101 102 | rspcdva | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ¬ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) |
| 104 | simprrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) → ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) | |
| 105 | 104 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 106 | 105 | breq2d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 107 | 103 106 | mtbird | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ¬ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ) |
| 108 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) → 𝑎 ⊆ 𝐴 ) |
| 109 | 108 | sselda | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → 𝑐 ∈ 𝐴 ) |
| 110 | 109 | adantrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → 𝑐 ∈ 𝐴 ) |
| 111 | simprr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) | |
| 112 | 104 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 113 | 111 112 | eqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 114 | eleq1w | ⊢ ( 𝑔 = 𝑐 → ( 𝑔 ∈ 𝐴 ↔ 𝑐 ∈ 𝐴 ) ) | |
| 115 | fveqeq2 | ⊢ ( 𝑔 = 𝑐 → ( ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑓 ) ) ) | |
| 116 | 114 115 | anbi12d | ⊢ ( 𝑔 = 𝑐 → ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ↔ ( 𝑐 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 117 | breq1 | ⊢ ( 𝑔 = 𝑐 → ( 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ↔ 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) | |
| 118 | 117 | notbid | ⊢ ( 𝑔 = 𝑐 → ( ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ↔ ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 119 | 116 118 | imbi12d | ⊢ ( 𝑔 = 𝑐 → ( ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ↔ ( ( 𝑐 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) |
| 120 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) | |
| 121 | simprl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → 𝑐 ∈ 𝑎 ) | |
| 122 | 119 120 121 | rspcdva | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( ( 𝑐 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 123 | 110 113 122 | mp2and | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) |
| 124 | 111 112 | eqtr2d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑓 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 125 | 124 | csbeq1d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 ) |
| 126 | 125 | breqd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ↔ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 127 | 123 126 | mtbid | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) |
| 128 | 127 | expr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 129 | imnan | ⊢ ( ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ↔ ¬ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) | |
| 130 | 128 129 | sylib | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ¬ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 131 | ioran | ⊢ ( ¬ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ∨ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ↔ ( ¬ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ∧ ¬ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) | |
| 132 | 107 130 131 | sylanbrc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ¬ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ∨ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) |
| 133 | 1 2 | fnwe2val | ⊢ ( 𝑐 𝑇 𝑒 ↔ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ∨ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) |
| 134 | 132 133 | sylnibr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ¬ 𝑐 𝑇 𝑒 ) |
| 135 | 134 | ralrimiva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) → ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑒 ) |
| 136 | breq2 | ⊢ ( 𝑏 = 𝑒 → ( 𝑐 𝑇 𝑏 ↔ 𝑐 𝑇 𝑒 ) ) | |
| 137 | 136 | notbid | ⊢ ( 𝑏 = 𝑒 → ( ¬ 𝑐 𝑇 𝑏 ↔ ¬ 𝑐 𝑇 𝑒 ) ) |
| 138 | 137 | ralbidv | ⊢ ( 𝑏 = 𝑒 → ( ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ↔ ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑒 ) ) |
| 139 | 138 | rspcev | ⊢ ( ( 𝑒 ∈ 𝑎 ∧ ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑒 ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) |
| 140 | 96 135 139 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) |
| 141 | 140 | ex | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) → ( ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) |
| 142 | 95 141 | biimtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) → ( ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) |
| 143 | 142 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) → ( ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) ) |
| 144 | 86 143 | biimtrid | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) → ( ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) ) |
| 145 | 144 | rexlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( ∃ 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) |
| 146 | 81 145 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) |
| 147 | 146 | rexlimdvaa | ⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝑎 ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) |
| 148 | 62 147 | sylbid | ⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) |
| 149 | 28 148 | mpd | ⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) |