This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnwe2.su | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) | |
| fnwe2.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } | ||
| fnwe2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) | ||
| fnwe2.f | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) | ||
| fnwe2.r | ⊢ ( 𝜑 → 𝑅 We 𝐵 ) | ||
| Assertion | fnwe2 | ⊢ ( 𝜑 → 𝑇 We 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.su | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) | |
| 2 | fnwe2.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } | |
| 3 | fnwe2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) | |
| 4 | fnwe2.f | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) | |
| 5 | fnwe2.r | ⊢ ( 𝜑 → 𝑅 We 𝐵 ) | |
| 6 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) |
| 7 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) |
| 8 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) ) → 𝑅 We 𝐵 ) |
| 9 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) ) → 𝑎 ⊆ 𝐴 ) | |
| 10 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) ) → 𝑎 ≠ ∅ ) | |
| 11 | 1 2 6 7 8 9 10 | fnwe2lem2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) ) → ∃ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑎 ¬ 𝑑 𝑇 𝑐 ) |
| 12 | 11 | ex | ⊢ ( 𝜑 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑎 ¬ 𝑑 𝑇 𝑐 ) ) |
| 13 | 12 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑎 ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑎 ¬ 𝑑 𝑇 𝑐 ) ) |
| 14 | df-fr | ⊢ ( 𝑇 Fr 𝐴 ↔ ∀ 𝑎 ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑎 ¬ 𝑑 𝑇 𝑐 ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( 𝜑 → 𝑇 Fr 𝐴 ) |
| 16 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) |
| 17 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) |
| 18 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑅 We 𝐵 ) |
| 19 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑎 ∈ 𝐴 ) | |
| 20 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑏 ∈ 𝐴 ) | |
| 21 | 1 2 16 17 18 19 20 | fnwe2lem3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 22 | 21 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 23 | dfwe2 | ⊢ ( 𝑇 We 𝐴 ↔ ( 𝑇 Fr 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) ) | |
| 24 | 15 22 23 | sylanbrc | ⊢ ( 𝜑 → 𝑇 We 𝐴 ) |