This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fnwe2 . Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnwe2.su | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) | |
| fnwe2.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } | ||
| fnwe2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) | ||
| Assertion | fnwe2lem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.su | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) | |
| 2 | fnwe2.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } | |
| 3 | fnwe2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) | |
| 4 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) |
| 5 | fveq2 | ⊢ ( 𝑎 = 𝑥 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 6 | 5 | csbeq1d | ⊢ ( 𝑎 = 𝑥 → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑥 ) / 𝑧 ⦌ 𝑆 ) |
| 7 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 8 | 7 1 | csbie | ⊢ ⦋ ( 𝐹 ‘ 𝑥 ) / 𝑧 ⦌ 𝑆 = 𝑈 |
| 9 | 6 8 | eqtrdi | ⊢ ( 𝑎 = 𝑥 → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 = 𝑈 ) |
| 10 | 5 | eqeq2d | ⊢ ( 𝑎 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 11 | 10 | rabbidv | ⊢ ( 𝑎 = 𝑥 → { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } = { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) |
| 12 | 9 11 | weeq12d | ⊢ ( 𝑎 = 𝑥 → ( ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ↔ 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) ) |
| 13 | 12 | cbvralvw | ⊢ ( ∀ 𝑎 ∈ 𝐴 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ↔ ∀ 𝑥 ∈ 𝐴 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) |
| 14 | 4 13 | sylibr | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 15 | 14 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |