This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fnwe2 . Trichotomy. (Contributed by Stefan O'Rear, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnwe2.su | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) | |
| fnwe2.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } | ||
| fnwe2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) | ||
| fnwe2.f | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) | ||
| fnwe2.r | ⊢ ( 𝜑 → 𝑅 We 𝐵 ) | ||
| fnwe2lem3.a | ⊢ ( 𝜑 → 𝑎 ∈ 𝐴 ) | ||
| fnwe2lem3.b | ⊢ ( 𝜑 → 𝑏 ∈ 𝐴 ) | ||
| Assertion | fnwe2lem3 | ⊢ ( 𝜑 → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.su | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) | |
| 2 | fnwe2.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } | |
| 3 | fnwe2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) | |
| 4 | fnwe2.f | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) | |
| 5 | fnwe2.r | ⊢ ( 𝜑 → 𝑅 We 𝐵 ) | |
| 6 | fnwe2lem3.a | ⊢ ( 𝜑 → 𝑎 ∈ 𝐴 ) | |
| 7 | fnwe2lem3.b | ⊢ ( 𝜑 → 𝑏 ∈ 𝐴 ) | |
| 8 | animorrl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) ) | |
| 9 | 1 2 | fnwe2val | ⊢ ( 𝑎 𝑇 𝑏 ↔ ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) ) |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) → 𝑎 𝑇 𝑏 ) |
| 11 | 10 | 3mix1d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 12 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 13 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) | |
| 14 | 12 13 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) |
| 15 | 14 | olcd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) ) |
| 16 | 15 9 | sylibr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → 𝑎 𝑇 𝑏 ) |
| 17 | 16 | 3mix1d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 18 | 3mix2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) | |
| 19 | 18 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 = 𝑏 ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 20 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 21 | 20 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 22 | csbeq1 | ⊢ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 ) |
| 24 | 23 | breqd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ↔ 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) |
| 25 | 24 | biimpa | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) |
| 26 | 21 25 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) |
| 27 | 26 | olcd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ∨ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) ) |
| 28 | 1 2 | fnwe2val | ⊢ ( 𝑏 𝑇 𝑎 ↔ ( ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ∨ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) ) |
| 29 | 27 28 | sylibr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → 𝑏 𝑇 𝑎 ) |
| 30 | 29 | 3mix3d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 31 | 1 2 3 | fnwe2lem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 32 | 6 31 | mpdan | ⊢ ( 𝜑 → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 33 | weso | ⊢ ( ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 Or { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) | |
| 34 | 32 33 | syl | ⊢ ( 𝜑 → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 Or { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 Or { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 36 | fveqeq2 | ⊢ ( 𝑦 = 𝑎 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) | |
| 37 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑎 ∈ 𝐴 ) |
| 38 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 39 | 36 37 38 | elrabd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑎 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 40 | fveqeq2 | ⊢ ( 𝑦 = 𝑏 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) ) | |
| 41 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑏 ∈ 𝐴 ) |
| 42 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 43 | 42 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 44 | 40 41 43 | elrabd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑏 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 45 | solin | ⊢ ( ( ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 Or { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ∧ ( 𝑎 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ∧ 𝑏 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) ) → ( 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) | |
| 46 | 35 39 44 45 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) |
| 47 | 17 19 30 46 | mpjao3dan | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 48 | animorrl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ∨ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) ) | |
| 49 | 48 28 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) → 𝑏 𝑇 𝑎 ) |
| 50 | 49 | 3mix3d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 51 | weso | ⊢ ( 𝑅 We 𝐵 → 𝑅 Or 𝐵 ) | |
| 52 | 5 51 | syl | ⊢ ( 𝜑 → 𝑅 Or 𝐵 ) |
| 53 | 6 | fvresd | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 54 | 4 6 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑎 ) ∈ 𝐵 ) |
| 55 | 53 54 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ) |
| 56 | 7 | fvresd | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 57 | 4 7 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ∈ 𝐵 ) |
| 58 | 56 57 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑏 ) ∈ 𝐵 ) |
| 59 | solin | ⊢ ( ( 𝑅 Or 𝐵 ∧ ( ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∨ ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) ) | |
| 60 | 52 55 58 59 | syl12anc | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∨ ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) ) |
| 61 | 11 47 50 60 | mpjao3dan | ⊢ ( 𝜑 → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |