This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fnwe2 . Substitute variables. (Contributed by Stefan O'Rear, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnwe2.su | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) | |
| fnwe2.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } | ||
| Assertion | fnwe2val | ⊢ ( 𝑎 𝑇 𝑏 ↔ ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.su | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) | |
| 2 | fnwe2.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } | |
| 3 | vex | ⊢ 𝑎 ∈ V | |
| 4 | vex | ⊢ 𝑏 ∈ V | |
| 5 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 7 | 5 6 | breqan12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) |
| 8 | 5 6 | eqeqan12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 9 | simpl | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑥 = 𝑎 ) | |
| 10 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 11 | 10 1 | csbie | ⊢ ⦋ ( 𝐹 ‘ 𝑥 ) / 𝑧 ⦌ 𝑆 = 𝑈 |
| 12 | 5 | csbeq1d | ⊢ ( 𝑥 = 𝑎 → ⦋ ( 𝐹 ‘ 𝑥 ) / 𝑧 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 ) |
| 13 | 11 12 | eqtr3id | ⊢ ( 𝑥 = 𝑎 → 𝑈 = ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑈 = ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 ) |
| 15 | simpr | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑦 = 𝑏 ) | |
| 16 | 9 14 15 | breq123d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑥 𝑈 𝑦 ↔ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) |
| 17 | 8 16 | anbi12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) ) |
| 18 | 7 17 | orbi12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) ) ) |
| 19 | 3 4 18 2 | braba | ⊢ ( 𝑎 𝑇 𝑏 ↔ ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) ) |