This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppssfv.a | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ⊆ 𝐿 ) | |
| suppssfv.f | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = 𝑍 ) | ||
| suppssfv.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑉 ) | ||
| suppssfv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| Assertion | suppssfv | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssfv.a | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ⊆ 𝐿 ) | |
| 2 | suppssfv.f | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = 𝑍 ) | |
| 3 | suppssfv.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑉 ) | |
| 4 | suppssfv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 5 | eldifsni | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( V ∖ { 𝑍 } ) → ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 ) | |
| 6 | 3 | elexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ V ) |
| 7 | 6 | ad4ant23 | ⊢ ( ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 ) → 𝐴 ∈ V ) |
| 8 | fveqeq2 | ⊢ ( 𝐴 = 𝑌 → ( ( 𝐹 ‘ 𝐴 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑌 ) = 𝑍 ) ) | |
| 9 | 2 8 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝐴 = 𝑌 → ( 𝐹 ‘ 𝐴 ) = 𝑍 ) ) |
| 10 | 9 | necon3d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 → 𝐴 ≠ 𝑌 ) ) |
| 11 | 10 | ad2antlr | ⊢ ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 → 𝐴 ≠ 𝑌 ) ) |
| 12 | 11 | imp | ⊢ ( ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 ) → 𝐴 ≠ 𝑌 ) |
| 13 | eldifsn | ⊢ ( 𝐴 ∈ ( V ∖ { 𝑌 } ) ↔ ( 𝐴 ∈ V ∧ 𝐴 ≠ 𝑌 ) ) | |
| 14 | 7 12 13 | sylanbrc | ⊢ ( ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 ) → 𝐴 ∈ ( V ∖ { 𝑌 } ) ) |
| 15 | 14 | ex | ⊢ ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 → 𝐴 ∈ ( V ∖ { 𝑌 } ) ) ) |
| 16 | 5 15 | syl5 | ⊢ ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( V ∖ { 𝑍 } ) → 𝐴 ∈ ( V ∖ { 𝑌 } ) ) ) |
| 17 | 16 | ss2rabdv | ⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝐴 ) ∈ ( V ∖ { 𝑍 } ) } ⊆ { 𝑥 ∈ 𝐷 ∣ 𝐴 ∈ ( V ∖ { 𝑌 } ) } ) |
| 18 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) | |
| 19 | simpll | ⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝐷 ∈ V ) | |
| 20 | simplr | ⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝑍 ∈ V ) | |
| 21 | 18 19 20 | mptsuppdifd | ⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝐴 ) ∈ ( V ∖ { 𝑍 } ) } ) |
| 22 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) | |
| 23 | 4 | adantl | ⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝑌 ∈ 𝑈 ) |
| 24 | 22 19 23 | mptsuppdifd | ⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) = { 𝑥 ∈ 𝐷 ∣ 𝐴 ∈ ( V ∖ { 𝑌 } ) } ) |
| 25 | 17 21 24 | 3sstr4d | ⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ) |
| 26 | 1 | adantl | ⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ⊆ 𝐿 ) |
| 27 | 25 26 | sstrd | ⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
| 28 | 27 | ex | ⊢ ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ 𝐿 ) ) |
| 29 | mptexg | ⊢ ( 𝐷 ∈ V → ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V ) | |
| 30 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 31 | 30 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝐴 ) ∈ V |
| 32 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝐴 ) ∈ V → dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) = 𝐷 ) | |
| 33 | 31 32 | ax-mp | ⊢ dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) = 𝐷 |
| 34 | dmexg | ⊢ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V → dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V ) | |
| 35 | 33 34 | eqeltrrid | ⊢ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V → 𝐷 ∈ V ) |
| 36 | 29 35 | impbii | ⊢ ( 𝐷 ∈ V ↔ ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V ) |
| 37 | 36 | anbi1i | ⊢ ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ↔ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V ∧ 𝑍 ∈ V ) ) |
| 38 | supp0prc | ⊢ ( ¬ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) = ∅ ) | |
| 39 | 37 38 | sylnbi | ⊢ ( ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) = ∅ ) |
| 40 | 0ss | ⊢ ∅ ⊆ 𝐿 | |
| 41 | 39 40 | eqsstrdi | ⊢ ( ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
| 42 | 41 | a1d | ⊢ ( ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ 𝐿 ) ) |
| 43 | 28 42 | pm2.61i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ 𝐿 ) |