This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplmon2cl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplmon2cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplmon2cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplmon2cl.c | ⊢ 𝐶 = ( Base ‘ 𝑅 ) | ||
| mplmon2cl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplmon2cl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mplmon2cl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplmon2cl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) | ||
| mplmon2cl.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝐷 ) | ||
| Assertion | mplmon2cl | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , 𝑋 , 0 ) ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon2cl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplmon2cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 3 | mplmon2cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplmon2cl.c | ⊢ 𝐶 = ( Base ‘ 𝑅 ) | |
| 5 | mplmon2cl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mplmon2cl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | mplmon2cl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 8 | mplmon2cl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) | |
| 9 | mplmon2cl.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝐷 ) | |
| 10 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 11 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 12 | 1 10 2 11 3 4 5 6 9 8 | mplmon2 | ⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , 𝑋 , 0 ) ) ) |
| 13 | 1 5 6 | mpllmodd | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 14 | 1 5 6 | mplsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 15 | 14 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 16 | 4 15 | eqtrid | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 17 | 8 16 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 18 | 1 7 3 11 2 5 6 9 | mplmon | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ 𝐵 ) |
| 19 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 20 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 21 | 7 19 10 20 | lmodvscl | ⊢ ( ( 𝑃 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ 𝐵 ) → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ 𝐵 ) |
| 22 | 13 17 18 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ 𝐵 ) |
| 23 | 12 22 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , 𝑋 , 0 ) ) ∈ 𝐵 ) |