This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplmon2cl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplmon2cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplmon2cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplmon2cl.c | ⊢ 𝐶 = ( Base ‘ 𝑅 ) | ||
| mplmon2cl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplmon2mul.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| mplmon2mul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | ||
| mplmon2mul.u | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mplmon2mul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) | ||
| mplmon2mul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) | ||
| mplmon2mul.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) | ||
| mplmon2mul.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐶 ) | ||
| Assertion | mplmon2mul | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 𝐹 , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 𝐺 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 𝐹 · 𝐺 ) , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon2cl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplmon2cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 3 | mplmon2cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplmon2cl.c | ⊢ 𝐶 = ( Base ‘ 𝑅 ) | |
| 5 | mplmon2cl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mplmon2mul.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 7 | mplmon2mul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | |
| 8 | mplmon2mul.u | ⊢ · = ( .r ‘ 𝑅 ) | |
| 9 | mplmon2mul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) | |
| 10 | mplmon2mul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) | |
| 11 | mplmon2mul.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) | |
| 12 | mplmon2mul.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐶 ) | |
| 13 | 1 | mplassa | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ AssAlg ) |
| 14 | 5 6 13 | syl2anc | ⊢ ( 𝜑 → 𝑃 ∈ AssAlg ) |
| 15 | 1 5 6 | mplsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 16 | 15 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 17 | 4 16 | eqtrid | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 18 | 11 17 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 19 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 20 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 21 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 22 | 6 21 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 23 | 1 19 3 20 2 5 22 9 | mplmon | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 24 | assalmod | ⊢ ( 𝑃 ∈ AssAlg → 𝑃 ∈ LMod ) | |
| 25 | 14 24 | syl | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 26 | 12 17 | eleqtrd | ⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 27 | 1 19 3 20 2 5 22 10 | mplmon | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 28 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 29 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 30 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 31 | 19 28 29 30 | lmodvscl | ⊢ ( ( 𝑃 ∈ LMod ∧ 𝐺 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 32 | 25 26 27 31 | syl3anc | ⊢ ( 𝜑 → ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 33 | 19 28 30 29 7 | assaass | ⊢ ( ( 𝑃 ∈ AssAlg ∧ ( 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) ) |
| 34 | 14 18 23 32 33 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) ) |
| 35 | 19 28 30 29 7 | assaassr | ⊢ ( ( 𝑃 ∈ AssAlg ∧ ( 𝐺 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) |
| 36 | 14 26 23 27 35 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) |
| 37 | 36 | oveq2d | ⊢ ( 𝜑 → ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) ) |
| 38 | 1 19 3 20 2 5 22 9 7 10 | mplmonmul | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) |
| 39 | 38 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 40 | 39 | oveq2d | ⊢ ( 𝜑 → ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) |
| 41 | 2 | psrbagaddcl | ⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) → ( 𝑋 ∘f + 𝑌 ) ∈ 𝐷 ) |
| 42 | 9 10 41 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∘f + 𝑌 ) ∈ 𝐷 ) |
| 43 | 1 19 3 20 2 5 22 42 | mplmon | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 44 | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑃 ) ) = ( .r ‘ ( Scalar ‘ 𝑃 ) ) | |
| 45 | 19 28 29 30 44 | lmodvsass | ⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝐺 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) |
| 46 | 25 18 26 43 45 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) |
| 47 | 15 | fveq2d | ⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 48 | 8 47 | eqtr2id | ⊢ ( 𝜑 → ( .r ‘ ( Scalar ‘ 𝑃 ) ) = · ) |
| 49 | 48 | oveqd | ⊢ ( 𝜑 → ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 ) = ( 𝐹 · 𝐺 ) ) |
| 50 | 49 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( ( 𝐹 · 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 51 | 40 46 50 | 3eqtr2d | ⊢ ( 𝜑 → ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) = ( ( 𝐹 · 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 52 | 34 37 51 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( ( 𝐹 · 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 53 | 1 29 2 20 3 4 5 22 9 11 | mplmon2 | ⊢ ( 𝜑 → ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 𝐹 , 0 ) ) ) |
| 54 | 1 29 2 20 3 4 5 22 10 12 | mplmon2 | ⊢ ( 𝜑 → ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 𝐺 , 0 ) ) ) |
| 55 | 53 54 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐹 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∙ ( 𝐺 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 𝐹 , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 𝐺 , 0 ) ) ) ) |
| 56 | 4 8 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐶 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 · 𝐺 ) ∈ 𝐶 ) |
| 57 | 22 11 12 56 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐶 ) |
| 58 | 1 29 2 20 3 4 5 22 42 57 | mplmon2 | ⊢ ( 𝜑 → ( ( 𝐹 · 𝐺 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 𝐹 · 𝐺 ) , 0 ) ) ) |
| 59 | 52 55 58 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 𝐹 , 0 ) ) ∙ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 𝐺 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , ( 𝐹 · 𝐺 ) , 0 ) ) ) |