This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummhm.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsummhm.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummhm.h | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) | ||
| gsummhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsummhm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) | ||
| gsummhm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsummhm.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsummhm | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummhm.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsummhm.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsummhm.h | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) | |
| 5 | gsummhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsummhm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) | |
| 7 | gsummhm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsummhm.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 9 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 10 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 12 | 1 9 3 7 | cntzcmnf | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) ) |
| 13 | 1 9 11 4 5 6 7 12 2 8 | gsumzmhm | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) |