This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015) (Revised by AV, 10-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumdixp.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| gsumdixp.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| gsumdixp.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| gsumdixp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| gsumdixp.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | ||
| gsumdixp.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| gsumdixp.x | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑋 ∈ 𝐵 ) | ||
| gsumdixp.y | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → 𝑌 ∈ 𝐵 ) | ||
| gsumdixp.xf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) finSupp 0 ) | ||
| gsumdixp.yf | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) finSupp 0 ) | ||
| Assertion | gsumdixp | ⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ) · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumdixp.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | gsumdixp.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | gsumdixp.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | gsumdixp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 5 | gsumdixp.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | |
| 6 | gsumdixp.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | gsumdixp.x | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑋 ∈ 𝐵 ) | |
| 8 | gsumdixp.y | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → 𝑌 ∈ 𝐵 ) | |
| 9 | gsumdixp.xf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) finSupp 0 ) | |
| 10 | gsumdixp.yf | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) finSupp 0 ) | |
| 11 | 6 | ringcmnd | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 12 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐽 ∈ 𝑊 ) |
| 13 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 𝑅 ∈ Ring ) |
| 14 | 7 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ) |
| 15 | simpl | ⊢ ( ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) → 𝑖 ∈ 𝐼 ) | |
| 16 | ffvelcdm | ⊢ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) ∈ 𝐵 ) | |
| 17 | 14 15 16 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) ∈ 𝐵 ) |
| 18 | 8 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) : 𝐽 ⟶ 𝐵 ) |
| 19 | simpr | ⊢ ( ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) → 𝑗 ∈ 𝐽 ) | |
| 20 | ffvelcdm | ⊢ ( ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) : 𝐽 ⟶ 𝐵 ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ∈ 𝐵 ) | |
| 21 | 18 19 20 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ∈ 𝐵 ) |
| 22 | 1 2 13 17 21 | ringcld | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ∈ 𝐵 ) |
| 23 | 9 | fsuppimpd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∈ Fin ) |
| 24 | 10 | fsuppimpd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ∈ Fin ) |
| 25 | xpfi | ⊢ ( ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∈ Fin ∧ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ∈ Fin ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ∈ Fin ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ∈ Fin ) |
| 27 | ianor | ⊢ ( ¬ ( 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∧ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ↔ ( ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∨ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) | |
| 28 | brxp | ⊢ ( 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) 𝑗 ↔ ( 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∧ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) | |
| 29 | 27 28 | xchnxbir | ⊢ ( ¬ 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) 𝑗 ↔ ( ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∨ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 30 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 𝑖 ∈ 𝐼 ) | |
| 31 | eldif | ⊢ ( 𝑖 ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ↔ ( 𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) | |
| 32 | 31 | biimpri | ⊢ ( ( 𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → 𝑖 ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) |
| 33 | 30 32 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → 𝑖 ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) |
| 34 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ) |
| 35 | ssidd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ⊆ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) | |
| 36 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 𝐼 ∈ 𝑉 ) |
| 37 | 3 | fvexi | ⊢ 0 ∈ V |
| 38 | 37 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 0 ∈ V ) |
| 39 | 34 35 36 38 | suppssr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) = 0 ) |
| 40 | 33 39 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) = 0 ) |
| 41 | 40 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 42 | 1 2 3 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ∈ 𝐵 ) → ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 43 | 13 21 42 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 45 | 41 44 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 46 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 𝑗 ∈ 𝐽 ) | |
| 47 | eldif | ⊢ ( 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ↔ ( 𝑗 ∈ 𝐽 ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) | |
| 48 | 47 | biimpri | ⊢ ( ( 𝑗 ∈ 𝐽 ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 49 | 46 48 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 50 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) : 𝐽 ⟶ 𝐵 ) |
| 51 | ssidd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ⊆ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) | |
| 52 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 𝐽 ∈ 𝑊 ) |
| 53 | 50 51 52 38 | suppssr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) = 0 ) |
| 54 | 49 53 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) = 0 ) |
| 55 | 54 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · 0 ) ) |
| 56 | 1 2 3 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · 0 ) = 0 ) |
| 57 | 13 17 56 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · 0 ) = 0 ) |
| 58 | 57 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · 0 ) = 0 ) |
| 59 | 55 58 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 60 | 45 59 | jaodan | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ( ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∨ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 61 | 29 60 | sylan2b | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) 𝑗 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 62 | 61 | anasss | ⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ∧ ¬ 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) 𝑗 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 63 | 1 3 11 4 12 22 26 62 | gsum2d2 | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑖 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) ) ) ) |
| 64 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) | |
| 65 | nfcv | ⊢ Ⅎ 𝑥 · | |
| 66 | nfcv | ⊢ Ⅎ 𝑥 ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) | |
| 67 | 64 65 66 | nfov | ⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 68 | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) | |
| 69 | nfcv | ⊢ Ⅎ 𝑦 · | |
| 70 | nffvmpt1 | ⊢ Ⅎ 𝑦 ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) | |
| 71 | 68 69 70 | nfov | ⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 72 | nfcv | ⊢ Ⅎ 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) | |
| 73 | nfcv | ⊢ Ⅎ 𝑗 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) | |
| 74 | fveq2 | ⊢ ( 𝑖 = 𝑥 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) = ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) ) | |
| 75 | fveq2 | ⊢ ( 𝑗 = 𝑦 → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) = ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) | |
| 76 | 74 75 | oveqan12d | ⊢ ( ( 𝑖 = 𝑥 ∧ 𝑗 = 𝑦 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) |
| 77 | 67 71 72 73 76 | cbvmpo | ⊢ ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) = ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) |
| 78 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑥 ∈ 𝐼 ) | |
| 79 | 7 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑋 ∈ 𝐵 ) |
| 80 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) | |
| 81 | 80 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 82 | 78 79 81 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 83 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑦 ∈ 𝐽 ) | |
| 84 | eqid | ⊢ ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) = ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) | |
| 85 | 84 | fvmpt2 | ⊢ ( ( 𝑦 ∈ 𝐽 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) = 𝑌 ) |
| 86 | 83 8 85 | 3imp3i2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) = 𝑌 ) |
| 87 | 82 86 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) = ( 𝑋 · 𝑌 ) ) |
| 88 | 87 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) |
| 89 | 77 88 | eqtrid | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) = ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) |
| 90 | 89 | oveq2d | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) |
| 91 | nfcv | ⊢ Ⅎ 𝑥 𝑅 | |
| 92 | nfcv | ⊢ Ⅎ 𝑥 Σg | |
| 93 | nfcv | ⊢ Ⅎ 𝑥 𝐽 | |
| 94 | 93 67 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 95 | 91 92 94 | nfov | ⊢ Ⅎ 𝑥 ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) |
| 96 | nfcv | ⊢ Ⅎ 𝑖 ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) | |
| 97 | 74 | oveq1d | ⊢ ( 𝑖 = 𝑥 → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 98 | 97 | mpteq2dv | ⊢ ( 𝑖 = 𝑥 → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) |
| 99 | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) | |
| 100 | 99 69 70 | nfov | ⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 101 | 75 | oveq2d | ⊢ ( 𝑗 = 𝑦 → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) |
| 102 | 100 73 101 | cbvmpt | ⊢ ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) = ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) |
| 103 | 98 102 | eqtrdi | ⊢ ( 𝑖 = 𝑥 → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) = ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) |
| 104 | 103 | oveq2d | ⊢ ( 𝑖 = 𝑥 → ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) ) |
| 105 | 95 96 104 | cbvmpt | ⊢ ( 𝑖 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) ) |
| 106 | 87 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) = ( 𝑋 · 𝑌 ) ) |
| 107 | 106 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) |
| 108 | 107 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) |
| 109 | 108 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) ) |
| 110 | 105 109 | eqtrid | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) ) |
| 111 | 110 | oveq2d | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) ) ) |
| 112 | 63 90 111 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) ) ) |
| 113 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 114 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐽 ∈ 𝑊 ) |
| 115 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑌 ∈ 𝐵 ) |
| 116 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) finSupp 0 ) |
| 117 | 1 3 2 113 114 7 115 116 | gsummulc2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) ) |
| 118 | 117 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) ) ) |
| 119 | 118 | oveq2d | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) ) ) ) |
| 120 | 1 3 11 5 18 10 | gsumcl | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ∈ 𝐵 ) |
| 121 | 1 3 2 6 4 120 7 9 | gsummulc1 | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ) · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) ) |
| 122 | 112 119 121 | 3eqtrrd | ⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ) · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) |