This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015) (Revised by AV, 18-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlslem4.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| evlslem4.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| evlslem4.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| evlslem4.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| evlslem4.x | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑋 ∈ 𝐵 ) | ||
| evlslem4.y | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → 𝑌 ∈ 𝐵 ) | ||
| evlslem4.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlslem4.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | ||
| Assertion | evlslem4 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) supp 0 ) ⊆ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlslem4.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | evlslem4.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | evlslem4.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | evlslem4.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | evlslem4.x | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | evlslem4.y | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → 𝑌 ∈ 𝐵 ) | |
| 7 | evlslem4.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 8 | evlslem4.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | |
| 9 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑥 ∈ 𝐼 ) | |
| 10 | 5 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑋 ∈ 𝐵 ) |
| 11 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) | |
| 12 | 11 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 13 | 9 10 12 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 14 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑦 ∈ 𝐽 ) | |
| 15 | eqid | ⊢ ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) = ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) | |
| 16 | 15 | fvmpt2 | ⊢ ( ( 𝑦 ∈ 𝐽 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) = 𝑌 ) |
| 17 | 14 6 16 | 3imp3i2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) = 𝑌 ) |
| 18 | 13 17 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) = ( 𝑋 · 𝑌 ) ) |
| 19 | 18 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) |
| 20 | nfcv | ⊢ Ⅎ 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) | |
| 21 | nfcv | ⊢ Ⅎ 𝑗 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) | |
| 22 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) | |
| 23 | nfcv | ⊢ Ⅎ 𝑥 · | |
| 24 | nfcv | ⊢ Ⅎ 𝑥 ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) | |
| 25 | 22 23 24 | nfov | ⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 26 | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) | |
| 27 | nfcv | ⊢ Ⅎ 𝑦 · | |
| 28 | nffvmpt1 | ⊢ Ⅎ 𝑦 ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) | |
| 29 | 26 27 28 | nfov | ⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 30 | fveq2 | ⊢ ( 𝑥 = 𝑖 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) ) | |
| 31 | fveq2 | ⊢ ( 𝑦 = 𝑗 → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) | |
| 32 | 30 31 | oveqan12d | ⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 33 | 20 21 25 29 32 | cbvmpo | ⊢ ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) = ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 34 | vex | ⊢ 𝑖 ∈ V | |
| 35 | vex | ⊢ 𝑗 ∈ V | |
| 36 | 34 35 | eqop2 | ⊢ ( 𝑧 = 〈 𝑖 , 𝑗 〉 ↔ ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑧 ) = 𝑖 ∧ ( 2nd ‘ 𝑧 ) = 𝑗 ) ) ) |
| 37 | fveq2 | ⊢ ( ( 1st ‘ 𝑧 ) = 𝑖 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) = ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) ) | |
| 38 | fveq2 | ⊢ ( ( 2nd ‘ 𝑧 ) = 𝑗 → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) = ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) | |
| 39 | 37 38 | oveqan12d | ⊢ ( ( ( 1st ‘ 𝑧 ) = 𝑖 ∧ ( 2nd ‘ 𝑧 ) = 𝑗 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 40 | 36 39 | simplbiim | ⊢ ( 𝑧 = 〈 𝑖 , 𝑗 〉 → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 41 | 40 | mpompt | ⊢ ( 𝑧 ∈ ( 𝐼 × 𝐽 ) ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) = ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 42 | 33 41 | eqtr4i | ⊢ ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐼 × 𝐽 ) ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
| 43 | 19 42 | eqtr3di | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) = ( 𝑧 ∈ ( 𝐼 × 𝐽 ) ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) ) |
| 44 | 43 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) supp 0 ) = ( ( 𝑧 ∈ ( 𝐼 × 𝐽 ) ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) supp 0 ) ) |
| 45 | difxp | ⊢ ( ( 𝐼 × 𝐽 ) ∖ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) = ( ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∪ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) | |
| 46 | 45 | eleq2i | ⊢ ( 𝑧 ∈ ( ( 𝐼 × 𝐽 ) ∖ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ↔ 𝑧 ∈ ( ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∪ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) ) |
| 47 | elun | ⊢ ( 𝑧 ∈ ( ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∪ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) ↔ ( 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∨ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) ) | |
| 48 | 46 47 | bitri | ⊢ ( 𝑧 ∈ ( ( 𝐼 × 𝐽 ) ∖ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ↔ ( 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∨ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) ) |
| 49 | xp1st | ⊢ ( 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) → ( 1st ‘ 𝑧 ) ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) | |
| 50 | 5 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ) |
| 51 | ssidd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ⊆ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) | |
| 52 | 2 | fvexi | ⊢ 0 ∈ V |
| 53 | 52 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 54 | 50 51 7 53 | suppssr | ⊢ ( ( 𝜑 ∧ ( 1st ‘ 𝑧 ) ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) = 0 ) |
| 55 | 49 54 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) = 0 ) |
| 56 | 55 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
| 57 | 6 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) : 𝐽 ⟶ 𝐵 ) |
| 58 | xp2nd | ⊢ ( 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) → ( 2nd ‘ 𝑧 ) ∈ 𝐽 ) | |
| 59 | ffvelcdm | ⊢ ( ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) : 𝐽 ⟶ 𝐵 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝐽 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ∈ 𝐵 ) | |
| 60 | 57 58 59 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ∈ 𝐵 ) |
| 61 | 1 3 2 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ∈ 𝐵 ) → ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 62 | 4 60 61 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ) → ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 63 | 56 62 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 64 | xp2nd | ⊢ ( 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) | |
| 65 | ssidd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ⊆ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) | |
| 66 | 57 65 8 53 | suppssr | ⊢ ( ( 𝜑 ∧ ( 2nd ‘ 𝑧 ) ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) = 0 ) |
| 67 | 64 66 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) = 0 ) |
| 68 | 67 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · 0 ) ) |
| 69 | xp1st | ⊢ ( 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ 𝐼 ) | |
| 70 | ffvelcdm | ⊢ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ∧ ( 1st ‘ 𝑧 ) ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) ∈ 𝐵 ) | |
| 71 | 50 69 70 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) ∈ 𝐵 ) |
| 72 | 1 3 2 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · 0 ) = 0 ) |
| 73 | 4 71 72 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · 0 ) = 0 ) |
| 74 | 68 73 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 75 | 63 74 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∨ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 76 | 48 75 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 × 𝐽 ) ∖ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 77 | 7 8 | xpexd | ⊢ ( 𝜑 → ( 𝐼 × 𝐽 ) ∈ V ) |
| 78 | 76 77 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝐼 × 𝐽 ) ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) supp 0 ) ⊆ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 79 | 44 78 | eqsstrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) supp 0 ) ⊆ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |