This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumrpcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumrpcl.2 | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | ||
| isumrpcl.3 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| isumrpcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumrpcl.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ+ ) | ||
| isumrpcl.6 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| Assertion | isumrpcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑊 𝐴 ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumrpcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumrpcl.2 | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | |
| 3 | isumrpcl.3 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 4 | isumrpcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 5 | isumrpcl.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ+ ) | |
| 6 | isumrpcl.6 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 7 | 3 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 10 | uzss | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 11 | 7 10 | syl | ⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 12 | 11 2 1 | 3sstr4g | ⊢ ( 𝜑 → 𝑊 ⊆ 𝑍 ) |
| 13 | 12 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ 𝑍 ) |
| 14 | 13 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 15 | 5 | rpred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
| 16 | 13 15 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐴 ∈ ℝ ) |
| 17 | 4 5 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
| 18 | 17 | rpcnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 19 | 1 3 18 | iserex | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 20 | 6 19 | mpbid | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 21 | 2 9 14 16 20 | isumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑊 𝐴 ∈ ℝ ) |
| 22 | fveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 23 | 22 | eleq1d | ⊢ ( 𝑘 = 𝑁 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℝ+ ) ) |
| 24 | 17 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
| 25 | 23 24 3 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ+ ) |
| 26 | seq1 | ⊢ ( 𝑁 ∈ ℤ → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 27 | 9 26 | syl | ⊢ ( 𝜑 → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 28 | uzid | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 29 | 9 28 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 30 | 29 2 | eleqtrrdi | ⊢ ( 𝜑 → 𝑁 ∈ 𝑊 ) |
| 31 | 16 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐴 ∈ ℂ ) |
| 32 | 2 9 14 31 20 | isumclim2 | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑊 𝐴 ) |
| 33 | 12 | sseld | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝑊 → 𝑚 ∈ 𝑍 ) ) |
| 34 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 35 | 34 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ↔ ( 𝐹 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 36 | 35 | rspcv | ⊢ ( 𝑚 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ → ( 𝐹 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 37 | 33 24 36 | syl6ci | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝑊 → ( 𝐹 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 38 | 37 | imp | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ+ ) |
| 39 | 38 | rpred | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) |
| 40 | 38 | rpge0d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → 0 ≤ ( 𝐹 ‘ 𝑚 ) ) |
| 41 | 2 30 32 39 40 | climserle | ⊢ ( 𝜑 → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) ≤ Σ 𝑘 ∈ 𝑊 𝐴 ) |
| 42 | 27 41 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ Σ 𝑘 ∈ 𝑊 𝐴 ) |
| 43 | 21 25 42 | rpgecld | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑊 𝐴 ∈ ℝ+ ) |