This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: _e is irrational. (Contributed by Paul Chapman, 9-Feb-2008) (Proof shortened by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eirr | ⊢ e ∉ ℚ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) | |
| 2 | simpll | ⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ∧ e = ( 𝑝 / 𝑞 ) ) → 𝑝 ∈ ℤ ) | |
| 3 | simplr | ⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ∧ e = ( 𝑝 / 𝑞 ) ) → 𝑞 ∈ ℕ ) | |
| 4 | simpr | ⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ∧ e = ( 𝑝 / 𝑞 ) ) → e = ( 𝑝 / 𝑞 ) ) | |
| 5 | 1 2 3 4 | eirrlem | ⊢ ¬ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ∧ e = ( 𝑝 / 𝑞 ) ) |
| 6 | 5 | imnani | ⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) → ¬ e = ( 𝑝 / 𝑞 ) ) |
| 7 | 6 | nrexdv | ⊢ ( 𝑝 ∈ ℤ → ¬ ∃ 𝑞 ∈ ℕ e = ( 𝑝 / 𝑞 ) ) |
| 8 | 7 | nrex | ⊢ ¬ ∃ 𝑝 ∈ ℤ ∃ 𝑞 ∈ ℕ e = ( 𝑝 / 𝑞 ) |
| 9 | elq | ⊢ ( e ∈ ℚ ↔ ∃ 𝑝 ∈ ℤ ∃ 𝑞 ∈ ℕ e = ( 𝑝 / 𝑞 ) ) | |
| 10 | 8 9 | mtbir | ⊢ ¬ e ∈ ℚ |
| 11 | 10 | nelir | ⊢ e ∉ ℚ |