This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efcl . The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat is used to show convergence. (Contributed by NM, 26-Apr-2005) (Proof shortened by Mario Carneiro, 28-Apr-2014) (Proof shortened by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eftval.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| Assertion | efcllem | ⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eftval.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 3 | eqid | ⊢ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) = ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) | |
| 4 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 5 | 4 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 1 / 2 ) ∈ ℝ ) |
| 6 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 7 | 6 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 1 / 2 ) < 1 ) |
| 8 | 2re | ⊢ 2 ∈ ℝ | |
| 9 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 10 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( abs ‘ 𝐴 ) ∈ ℝ ) → ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℝ ) | |
| 11 | 8 9 10 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 12 | 8 | a1i | ⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℝ ) |
| 13 | 0le2 | ⊢ 0 ≤ 2 | |
| 14 | 13 | a1i | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ 2 ) |
| 15 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
| 16 | 12 9 14 15 | mulge0d | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( 2 · ( abs ‘ 𝐴 ) ) ) |
| 17 | flge0nn0 | ⊢ ( ( ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 2 · ( abs ‘ 𝐴 ) ) ) → ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℕ0 ) | |
| 18 | 11 16 17 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℕ0 ) |
| 19 | 1 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 21 | eftcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) | |
| 22 | 20 21 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 23 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 24 | eluznn0 | ⊢ ( ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 𝑘 ∈ ℕ0 ) | |
| 25 | 18 24 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 𝑘 ∈ ℕ0 ) |
| 26 | nn0p1nn | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 28 | 23 27 | nndivred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 29 | 4 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 1 / 2 ) ∈ ℝ ) |
| 30 | 23 25 | reexpcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 31 | 25 | faccld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 32 | 30 31 | nndivred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 33 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 34 | 25 33 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 35 | 34 | absge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 0 ≤ ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) ) |
| 36 | absexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | |
| 37 | 25 36 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 38 | 35 37 | breqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 39 | 31 | nnred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 40 | 31 | nngt0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 0 < ( ! ‘ 𝑘 ) ) |
| 41 | divge0 | ⊢ ( ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ∧ 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ∧ ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ 0 < ( ! ‘ 𝑘 ) ) ) → 0 ≤ ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) | |
| 42 | 30 38 39 40 41 | syl22anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 0 ≤ ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 43 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 44 | peano2nn0 | ⊢ ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ∈ ℕ0 ) | |
| 45 | 18 44 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ∈ ℕ0 ) |
| 46 | 45 | nn0red | ⊢ ( 𝐴 ∈ ℂ → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ∈ ℝ ) |
| 47 | 46 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ∈ ℝ ) |
| 48 | 27 | nnred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 49 | flltp1 | ⊢ ( ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℝ → ( 2 · ( abs ‘ 𝐴 ) ) < ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ) | |
| 50 | 43 49 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 2 · ( abs ‘ 𝐴 ) ) < ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ) |
| 51 | eluzp1p1 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ) ) | |
| 52 | 51 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ) ) |
| 53 | eluzle | ⊢ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ) → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ≤ ( 𝑘 + 1 ) ) | |
| 54 | 52 53 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ≤ ( 𝑘 + 1 ) ) |
| 55 | 43 47 48 50 54 | ltletrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 2 · ( abs ‘ 𝐴 ) ) < ( 𝑘 + 1 ) ) |
| 56 | 23 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 57 | 2cn | ⊢ 2 ∈ ℂ | |
| 58 | mulcom | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) · 2 ) = ( 2 · ( abs ‘ 𝐴 ) ) ) | |
| 59 | 56 57 58 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) · 2 ) = ( 2 · ( abs ‘ 𝐴 ) ) ) |
| 60 | 27 | nncnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 61 | 60 | mullidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 1 · ( 𝑘 + 1 ) ) = ( 𝑘 + 1 ) ) |
| 62 | 55 59 61 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) · 2 ) < ( 1 · ( 𝑘 + 1 ) ) ) |
| 63 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 64 | 63 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 2 ∈ ℝ+ ) |
| 65 | 1red | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 1 ∈ ℝ ) | |
| 66 | 27 | nnrpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ℝ+ ) |
| 67 | 23 64 65 66 | lt2mul2divd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ( abs ‘ 𝐴 ) · 2 ) < ( 1 · ( 𝑘 + 1 ) ) ↔ ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) < ( 1 / 2 ) ) ) |
| 68 | 62 67 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) < ( 1 / 2 ) ) |
| 69 | ltle | ⊢ ( ( ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) < ( 1 / 2 ) → ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ≤ ( 1 / 2 ) ) ) | |
| 70 | 28 4 69 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) < ( 1 / 2 ) → ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ≤ ( 1 / 2 ) ) ) |
| 71 | 68 70 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ≤ ( 1 / 2 ) ) |
| 72 | 28 29 32 42 71 | lemul2ad | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( 1 / 2 ) ) ) |
| 73 | peano2nn0 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) | |
| 74 | 25 73 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 75 | 1 | eftval | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ0 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) / ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 76 | 74 75 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) / ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 77 | 76 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( abs ‘ ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) / ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 78 | absexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( abs ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) | |
| 79 | 74 78 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( abs ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) |
| 80 | 56 25 | expp1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) · ( abs ‘ 𝐴 ) ) ) |
| 81 | 79 80 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) · ( abs ‘ 𝐴 ) ) ) |
| 82 | 74 | faccld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 83 | 82 | nnred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 84 | 82 | nnnn0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℕ0 ) |
| 85 | 84 | nn0ge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 0 ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) |
| 86 | 83 85 | absidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ! ‘ ( 𝑘 + 1 ) ) ) |
| 87 | facp1 | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) | |
| 88 | 25 87 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 89 | 86 88 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 90 | 81 89 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) / ( abs ‘ ( ! ‘ ( 𝑘 + 1 ) ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) · ( abs ‘ 𝐴 ) ) / ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
| 91 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) | |
| 92 | 74 91 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 93 | 82 | nncnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 94 | 82 | nnne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ≠ 0 ) |
| 95 | 92 93 94 | absdivd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) / ( ! ‘ ( 𝑘 + 1 ) ) ) ) = ( ( abs ‘ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) / ( abs ‘ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 96 | 30 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℂ ) |
| 97 | 31 | nncnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 98 | 31 | nnne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 99 | 27 | nnne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ≠ 0 ) |
| 100 | 96 97 56 60 98 99 | divmuldivd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) · ( abs ‘ 𝐴 ) ) / ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
| 101 | 90 95 100 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) / ( ! ‘ ( 𝑘 + 1 ) ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ) ) |
| 102 | 77 101 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ) ) |
| 103 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 104 | 25 22 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 105 | 104 | abscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 106 | 105 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 107 | mulcom | ⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) → ( ( 1 / 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) · ( 1 / 2 ) ) ) | |
| 108 | 103 106 107 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( 1 / 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) · ( 1 / 2 ) ) ) |
| 109 | 25 19 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 110 | 109 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 111 | eftabs | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) | |
| 112 | 25 111 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 113 | 110 112 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 114 | 113 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) · ( 1 / 2 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( 1 / 2 ) ) ) |
| 115 | 108 114 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( 1 / 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( 1 / 2 ) ) ) |
| 116 | 72 102 115 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( 1 / 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 117 | 2 3 5 7 18 22 116 | cvgrat | ⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |