This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of permutations of N - R objects from a collection of N objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | permnn | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑅 ) ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → 𝑅 ∈ ℕ0 ) | |
| 2 | 1 | faccld | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ! ‘ 𝑅 ) ∈ ℕ ) |
| 3 | fznn0sub | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝑅 ) ∈ ℕ0 ) | |
| 4 | 3 | faccld | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ! ‘ ( 𝑁 − 𝑅 ) ) ∈ ℕ ) |
| 5 | 4 2 | nnmulcld | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ( ! ‘ ( 𝑁 − 𝑅 ) ) · ( ! ‘ 𝑅 ) ) ∈ ℕ ) |
| 6 | elfz3nn0 | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 ) | |
| 7 | faccl | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) | |
| 8 | 7 | nncnd | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 9 | 6 8 | syl | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 10 | 4 | nncnd | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ! ‘ ( 𝑁 − 𝑅 ) ) ∈ ℂ ) |
| 11 | 2 | nncnd | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ! ‘ 𝑅 ) ∈ ℂ ) |
| 12 | facne0 | ⊢ ( 𝑅 ∈ ℕ0 → ( ! ‘ 𝑅 ) ≠ 0 ) | |
| 13 | 1 12 | syl | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ! ‘ 𝑅 ) ≠ 0 ) |
| 14 | 10 11 13 | divcan4d | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ( ( ! ‘ ( 𝑁 − 𝑅 ) ) · ( ! ‘ 𝑅 ) ) / ( ! ‘ 𝑅 ) ) = ( ! ‘ ( 𝑁 − 𝑅 ) ) ) |
| 15 | 14 4 | eqeltrd | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ( ( ! ‘ ( 𝑁 − 𝑅 ) ) · ( ! ‘ 𝑅 ) ) / ( ! ‘ 𝑅 ) ) ∈ ℕ ) |
| 16 | bcval2 | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝑅 ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝑅 ) ) · ( ! ‘ 𝑅 ) ) ) ) | |
| 17 | bccl2 | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝑅 ) ∈ ℕ ) | |
| 18 | 16 17 | eqeltrrd | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝑅 ) ) · ( ! ‘ 𝑅 ) ) ) ∈ ℕ ) |
| 19 | nndivtr | ⊢ ( ( ( ( ! ‘ 𝑅 ) ∈ ℕ ∧ ( ( ! ‘ ( 𝑁 − 𝑅 ) ) · ( ! ‘ 𝑅 ) ) ∈ ℕ ∧ ( ! ‘ 𝑁 ) ∈ ℂ ) ∧ ( ( ( ( ! ‘ ( 𝑁 − 𝑅 ) ) · ( ! ‘ 𝑅 ) ) / ( ! ‘ 𝑅 ) ) ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝑅 ) ) · ( ! ‘ 𝑅 ) ) ) ∈ ℕ ) ) → ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑅 ) ) ∈ ℕ ) | |
| 20 | 2 5 9 15 18 19 | syl32anc | ⊢ ( 𝑅 ∈ ( 0 ... 𝑁 ) → ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑅 ) ) ∈ ℕ ) |