This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | facdiv | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑗 = 0 → ( 𝑁 ≤ 𝑗 ↔ 𝑁 ≤ 0 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑗 = 0 → ( ! ‘ 𝑗 ) = ( ! ‘ 0 ) ) | |
| 3 | 2 | oveq1d | ⊢ ( 𝑗 = 0 → ( ( ! ‘ 𝑗 ) / 𝑁 ) = ( ( ! ‘ 0 ) / 𝑁 ) ) |
| 4 | 3 | eleq1d | ⊢ ( 𝑗 = 0 → ( ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ↔ ( ( ! ‘ 0 ) / 𝑁 ) ∈ ℕ ) ) |
| 5 | 1 4 | imbi12d | ⊢ ( 𝑗 = 0 → ( ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ↔ ( 𝑁 ≤ 0 → ( ( ! ‘ 0 ) / 𝑁 ) ∈ ℕ ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑗 = 0 → ( ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 0 → ( ( ! ‘ 0 ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 7 | breq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑁 ≤ 𝑗 ↔ 𝑁 ≤ 𝑘 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑘 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑗 = 𝑘 → ( ( ! ‘ 𝑗 ) / 𝑁 ) = ( ( ! ‘ 𝑘 ) / 𝑁 ) ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑗 = 𝑘 → ( ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ↔ ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ) |
| 11 | 7 10 | imbi12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ↔ ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 13 | breq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑁 ≤ 𝑗 ↔ 𝑁 ≤ ( 𝑘 + 1 ) ) ) | |
| 14 | fveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ! ‘ 𝑗 ) = ( ! ‘ ( 𝑘 + 1 ) ) ) | |
| 15 | 14 | oveq1d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ! ‘ 𝑗 ) / 𝑁 ) = ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ) |
| 16 | 15 | eleq1d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ↔ ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 17 | 13 16 | imbi12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ↔ ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 19 | breq2 | ⊢ ( 𝑗 = 𝑀 → ( 𝑁 ≤ 𝑗 ↔ 𝑁 ≤ 𝑀 ) ) | |
| 20 | fveq2 | ⊢ ( 𝑗 = 𝑀 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑀 ) ) | |
| 21 | 20 | oveq1d | ⊢ ( 𝑗 = 𝑀 → ( ( ! ‘ 𝑗 ) / 𝑁 ) = ( ( ! ‘ 𝑀 ) / 𝑁 ) ) |
| 22 | 21 | eleq1d | ⊢ ( 𝑗 = 𝑀 → ( ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ↔ ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) ) |
| 23 | 19 22 | imbi12d | ⊢ ( 𝑗 = 𝑀 → ( ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ↔ ( 𝑁 ≤ 𝑀 → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑗 = 𝑀 → ( ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑀 → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 25 | nnnle0 | ⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 ≤ 0 ) | |
| 26 | 25 | pm2.21d | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 0 → ( ( ! ‘ 0 ) / 𝑁 ) ∈ ℕ ) ) |
| 27 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 28 | peano2nn0 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) | |
| 29 | 28 | nn0red | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℝ ) |
| 30 | leloe | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( 𝑁 ≤ ( 𝑘 + 1 ) ↔ ( 𝑁 < ( 𝑘 + 1 ) ∨ 𝑁 = ( 𝑘 + 1 ) ) ) ) | |
| 31 | 27 29 30 | syl2an | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ≤ ( 𝑘 + 1 ) ↔ ( 𝑁 < ( 𝑘 + 1 ) ∨ 𝑁 = ( 𝑘 + 1 ) ) ) ) |
| 32 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 33 | nn0leltp1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑘 ↔ 𝑁 < ( 𝑘 + 1 ) ) ) | |
| 34 | 32 33 | sylan | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑘 ↔ 𝑁 < ( 𝑘 + 1 ) ) ) |
| 35 | nn0p1nn | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 36 | nnmulcl | ⊢ ( ( ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ∈ ℕ ) | |
| 37 | 35 36 | sylan2 | ⊢ ( ( ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 38 | 37 | expcom | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ∈ ℕ ) ) |
| 39 | 38 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ∈ ℕ ) ) |
| 40 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 41 | 40 | nncnd | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 42 | 28 | nn0cnd | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℂ ) |
| 43 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 44 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 45 | 43 44 | jca | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 47 | div23 | ⊢ ( ( ( ! ‘ 𝑘 ) ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℂ ∧ ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) = ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ) | |
| 48 | 41 42 46 47 | syl2an23an | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) = ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ) |
| 49 | 48 | eleq1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ↔ ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ∈ ℕ ) ) |
| 50 | 39 49 | sylibrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 51 | 50 | imim2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( 𝑁 ≤ 𝑘 → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 52 | 51 | com23 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑘 → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 53 | 34 52 | sylbird | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 < ( 𝑘 + 1 ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 54 | 41 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 55 | 43 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 56 | 44 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ≠ 0 ) |
| 57 | 54 55 56 | divcan4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) · 𝑁 ) / 𝑁 ) = ( ! ‘ 𝑘 ) ) |
| 58 | 40 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 59 | 57 58 | eqeltrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) · 𝑁 ) / 𝑁 ) ∈ ℕ ) |
| 60 | oveq2 | ⊢ ( 𝑁 = ( 𝑘 + 1 ) → ( ( ! ‘ 𝑘 ) · 𝑁 ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) | |
| 61 | 60 | oveq1d | ⊢ ( 𝑁 = ( 𝑘 + 1 ) → ( ( ( ! ‘ 𝑘 ) · 𝑁 ) / 𝑁 ) = ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ) |
| 62 | 61 | eleq1d | ⊢ ( 𝑁 = ( 𝑘 + 1 ) → ( ( ( ( ! ‘ 𝑘 ) · 𝑁 ) / 𝑁 ) ∈ ℕ ↔ ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 63 | 59 62 | syl5ibcom | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 = ( 𝑘 + 1 ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 64 | 63 | a1dd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 = ( 𝑘 + 1 ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 65 | 53 64 | jaod | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 < ( 𝑘 + 1 ) ∨ 𝑁 = ( 𝑘 + 1 ) ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 66 | 31 65 | sylbid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 67 | 66 | ex | ⊢ ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ℕ0 → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 68 | 67 | com34 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 69 | 68 | com12 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 70 | 69 | imp4d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ∧ 𝑁 ≤ ( 𝑘 + 1 ) ) ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 71 | facp1 | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) | |
| 72 | 71 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) = ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ) |
| 73 | 72 | eleq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ↔ ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 74 | 70 73 | sylibrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ∧ 𝑁 ≤ ( 𝑘 + 1 ) ) ) → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 75 | 74 | exp4d | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 76 | 75 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ) → ( 𝑁 ∈ ℕ → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 77 | 6 12 18 24 26 76 | nn0ind | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑀 → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) ) ) |
| 78 | 77 | 3imp | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) |